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ABSTRACT
The fusion of raw features from multiple sensors (such as stereo
cameras, LiDAR, radars) equipped on an autonomous vehicle to
create a Bird’s Eye View (BEV) representation is an essential and
powerful component in planning and controlling systems. Recently,
there has been a significant surge of interest in utilizing deep learn-
ing models for BEV semantic segmentation. However, being able to
anticipate errors in segmentation and improve the explainability of
DNNs is crucial to autonomous driving. In this paper, we evaluate
various uncertainty quantification methods for BEV semantic seg-
mentation based on two benchmark datasets (CARLA and nuScenes)
with two representative backbones (Lift-Splat-Shoot and cross-view
transformer). We perform an extensive evaluation of several uncer-
tainty quantificationmethods. Among these methods, the evidential
and postnet methods consistently demonstrate better performance
in uncertainty quantification compared to MC dropout, ensemble,
and deterministic baseline methods. Additionally, the ensemble
method consistently exhibits the best performance in segmentation.
We also propose augmenting uncertainty-aware BEV semantic seg-
mentation models with supervised camera-view semantic segmen-
tation features. Through extensive experiments, we consistently
observe improvements in both the quality of BEV segmentation
and the quality of uncertainty quantification. These findings sug-
gest that exploring different types of supervision holds promise
as a direction for enhancing uncertainty-aware BEV segmentation
models.

The code used for this paper can be found here: https://github.
com/bluffish/uq_bevss. An appendix containing extra details regard-
ing the dataset, model architecture, and plots to support reported
results can be found at this link: https://shorturl.at/efACD.

1 INTRODUCTION
Deep neural networks (DNN) have had tremendous success in
a large number of fields, including computer vision, natural lan-
guage processing, and others. However, DNNs tend to make over-
confident predictions on unseen, and unknown data and under-
confident predictions on noisy data. The difficulty in verifying the
correctness of DNNs has led to erroneous edge-case behaviors and
other unexpected consequences of autonomous vehicles (AV).

There are two main types of uncertainty: Epistemic uncertainty
is caused by a lack of knowledge, e.g. the input has regions very
different from those observed in the training dataset and aleatoric
uncertainty refers to uncertainty caused by randomness, such as
noisy data and labels.

The first and classical family quantifies the predictive uncertainty
of a DNNviamultiple forward passes, such as deep ensemble [7] and
dropout-based [4] methods. However, the requirement of excessive

memory and computation burden makes them impossible for real-
time applications. As proposed in recent years, the second family
quantifies uncertainty using deterministic single forward-pass neu-
ral networks, including density-based and conjugate-prior-based
methods. The density-based methods, such as posterior networks
(postnet) [2], typically fit a distribution in the representation space
and then use the associated PDF function to quantify different uncer-
tainty types. The conjugate-prior-based methods, such as evidential
neural networks (evidential) [14], train a deterministic neural net-
work that directly predicts the conjugate prior distribution of the
class probabilities for uncertainty quantification.

In this study, we investigate the problem of uncertainty quantifi-
cation for BEV semantic segmentation (BEVSS). BEVSS has received
increased attention in recent years and has been adopted in in mod-
ern AV systems, such as the Tesla Autopilot system. BEVSS aims
to segment and categorize objects or regions in a top-down view
of a scene based on the fusion of images from multiple cameras
mounted on an AV. It involves predicting the class of each pixel in
the BEV view, such as roads, lane marks, vehicles, etc. To the best of
our knowledge, this is the first work evaluating various uncertainty
quantification methods for BEVSS. Our main contributions are as
follows:

• We present an extensive benchmark for evaluating uncer-
tainty quantification for BEV semantic segmentation. This
benchmark examines the performance of five representative
uncertainty quantification methods (softmax entropy, deep
ensemble, dropout-based, evidential, and postnet-based) on
two benchmark datasets (CARLA and nuScenes) with differ-
ent road maps and weather conditions. These uncertainty
quantification methods are evaluated on two representative
backbones (Lift-Splat-Shoot [12] and Cross-Viasdew Trans-
former [18]).

• Our empirical results demonstrate that evidential and post-
net are consistently themost effective in quantifying aleatoric
uncertainty for the task of misclassification detection. It is
clear that there is room for large improvement due to the
low AUPR scores for the task of misclassification detection.
We also find that current methods are not effective for OOD
detection, indicating pixel-wise OOD detection on BEV may
be a difficult task.

• We demonstrate that supervising camera-view segmentation
improves the quality of BEV segmentation and improves un-
certainty quantification for all baselines and backbones by
1-4% on misclassification task. This result indicates a promis-
ing direction to explore different methods of supervision to
improve the performance of existing methods for BEVSS.

https://github.com/bluffish/uq_bevss
https://github.com/bluffish/uq_bevss
https://shorturl.at/efACD
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2 BEV SEMANTIC SEGMENTATION
Existing BEVSS methods fall into two main categories: Lift splat
shoot (LSS) [6, 10, 12] and transformer-based approaches [11, 18].
This paper uses two representative methods, LSS [12] and Cross-
View Transformer (CVT) [18], as the backbones of our study.

LSS leverages raw pixel inputs from multiple surrounding cam-
eras and "lifts" each image individually into a frustum of features.
Initially, it predicts a categorical distribution over a predefined
set of possible depths. Subsequently, the frustum of features is
generated by multiplying the features with their predicted depth
probability. By utilizing known camera calibration matrices for
each camera, a point cloud of features in the ego coordinate space
can be obtained. LSS then "splats" all the frustums into a rasterized
bird’s-eye-view grid using a PointPillar [8] model. These splatted
features are then fed into a decoder module to predict BEVSS. The
concept of transforming from camera pixels to 3D point clouds and
subsequently to BEV pixels has inspired several subsequent models,
such as BEVDet [6] and FIERY [5].

CVT takes a distinct approach by leveraging transformer archi-
tecture and cross-attention mechanism. CVT begins by extracting
features from multiple surrounding camera images using a pre-
trained EfficientNet-B4[17] model. These extracted features serve
as the attention values in the subsequent cross-attention step. To
create the attention keys, the features are concatenated with the
camera-aware positional embedding. This positional embedding is
constructed using known camera pose and intrinsic information,
enabling the model to account for the specific characteristics of
each camera. The positional encoding of the BEV space serves as
the queries during the cross attention process.

3 UNCERTAINTY QUANTIFICATION ON BEV
SEMANTIC SEGMENTATION

Suppose we are given 𝑛 images from different RGB camera views
of the ego vehicle. Let X := {X𝑘 , E𝑘 , I𝑘 }𝑛𝑘=1 denote the input, where
each camera view has a feature matrix X𝑘 ∈ R3×𝐻×𝑊 , extrinsic
matrix E𝑘 ∈ R3×4, and intrinsic matrix I𝑘 ∈ R3×3. BEV semantic
segmentation aims to predict the pixel-level classes in the BEV co-
ordinate frame Y ∈ {0, 1}𝐶×𝑋×𝑌 , where 𝐶 is the number of classes
and 𝑋 and 𝑌 are width and height of the BEV frame, respectively.
A BEV neural network has the general form: P = 𝑓 (X;𝜽 ), where
P ∈ [0, 1]𝐶×𝑋×𝑌 are the pixel-wise class probabilities and 𝜽 refers
to the nework weights. We use p𝑖, 𝑗 to denote the class-probability
vector of the BEV pixel indexed by (𝑖, 𝑗).

We will investigate different uncertainty quantification methods
to quantify the aleatoric uncertainty 𝑢𝑎𝑙𝑒𝑎

𝑖,𝑗
and the epistemic un-

certainty 𝑢𝑒𝑝𝑖𝑠
𝑖, 𝑗

of the BEV network for each BEV pixel (𝑖, 𝑗). We
will consider the following representative methods: softmax, deep
ensemble-based, dropout-based, evidential neural networks, and
postnet-based methods.
Softmax-based. Softmax entropy is one of the most commonly
used metrics for uncertainty. It is the entropy (H(𝑝 (Y𝑖, 𝑗 |X;𝜽 ))) of
softmax distribution 𝑝 (Y𝑖, 𝑗 |X;𝜽 ).

H(𝑝 (Y𝑖, 𝑗 |X;𝜽 )) = −
∑︁𝐶

𝑐=1
𝑃𝑐,𝑖, 𝑗 log 𝑃𝑐,𝑖, 𝑗 . (1)

This metric is known to capture aleatoric uncertainty, but can not
capture epistemic uncertainty reliably.
Deep-ensembles-based [7].Deep Ensembles-basedmethod learns
𝑀 different versions of network weights {𝜽 (1) , · · · , 𝜽 (𝑀 ) } based
on different random seeds and aggregates the predictions of these
versions. The aleatoric uncertainty is measured by the softmax en-
tropy of the mean of the predictions from different network weights.
The epistemic uncertainty is measured the variance between the
model predictions.

𝑢𝑎𝑙𝑒𝑎𝑖,𝑗 = −
∑︁𝐶

𝑐=1

(
1
𝑀

∑︁𝑀

𝑚=1
𝑃
(𝑚)
𝑐,𝑖, 𝑗

)
log

(
1
𝑀

∑︁𝑀

𝑚=1
𝑃
(𝑚)
𝑐,𝑖, 𝑗

)
𝑢
𝑒𝑝𝑖𝑠

𝑖, 𝑗
=

1∑
𝑐 var({𝑃

(𝑚)
𝑐,𝑖, 𝑗

}𝑀
𝑚=1)

,
(2)

where P(𝑚) ∈ [0, 1]𝐶×𝑋×𝑌 refers to the predictions of BEV network
based on the network weights 𝜽 (𝑚) .
Dropout-based [4]. It is a method that approximates Bayesian
inference based on dropout at test time. It conducts multiple stochas-
tic forward passes with active dropout layers at test time. Similar
to Deep ensembles, the entropy of expected softmax probability
and variance of multiple predictions are used as uncertainty scores.
Evidential [14] Evidential neural network (ENN) was originally
designed for singe-output classification tasks (e.g., image classifica-
tion) and predicts the parameters of a Dirichlet distribution instead
of class probabilities (the parameters of a categorical distribution).
Dirichlet is the conjugate prior to the categorical distribution (or
second-order distribution of the class label) and can effectively quan-
tify different types of uncertainty, such as epistemic and aleatoric
uncertainty. In this study, we extend evidential to conduct uncer-
tainty quantification for BEV semantic segmentation. We use the
same BEV network architecture, except that we replace the softmax
activation function with the ReLU activation function to predict
the concentration parameters (𝜶𝑖, 𝑗 ∈ R+𝐶 ) of a Dirichlet for each
pixel (𝑖, 𝑗) in the BEV frame.

𝑌𝑖, 𝑗 ∼ Cat(p𝑖, 𝑗 ), p𝑖, 𝑗 ∼ Dir(𝜶𝑖, 𝑗 ). (3)

The aleatoric and epistemic uncertainty of the pixel (𝑖, 𝑗) can be
estimated based on the Dirichlet parameters 𝜶𝑖, 𝑗 :

𝑢𝑎𝑙𝑒𝑎𝑖, 𝑗 = −max
𝑐

𝑝𝑐,𝑖, 𝑗 , 𝑢
𝑒𝑝𝑖𝑠

𝑖, 𝑗
= 𝐶/

∑︁𝐶

𝑐=1
𝛼𝑐,𝑖, 𝑗 , (4)

where p̄𝑖, 𝑗 := E[p𝑖, 𝑗 |𝜶𝑖, 𝑗 ] is the expected class-probability vector
calculated based on the Dirichlet distribution Dir(𝜶𝑖, 𝑗 ).
Postnet-based [2] This method is designed based on feature space
density with the prior knowledge that instances with high epistemic
uncertainty should be far away from the training data in the latent
space. Postnet was originally designed for single-output classifica-
tion tasks and later extended to uncertainty quantification for graph
neural networks [16]. Postnet first applies an encoding network
(such as VGG [15]) to map the raw features to a low-dimensional
latent feature and then applies a normalizing flow layer to estimate
the densities of data points on latent space. The estimated densities
are used to calculate the parameters of a Dirichlet Distribution. To
generalize Postnet to BEV semantic segmentation, we adopt the
LSS or CVT as the encoding network and add convolutional layers
to propagate the pixel-level predicted evidence among the spatially
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Figure 1: Misclassification detection result on CARLA for all Cross View Transformer-
based models without segmentation: the left one shows the ROC curve, the middle one
shows the PR curve and the right one shows the PAvPU plot based on different uncertainty
thresholds. Numbers next to legend are area under curve values. Evidential and Postnet
have the highest AUC values for most metrics

correlated pixels. As Postnet and evidential are both predicting
Dirichlet distributions, we can use the same formulas in Eq. (4) to
estimate uncertainties.

4 EXPERIMENTS
In this section, we evaluate several baselines for uncertainty quan-
tification in BEVSS on two backbones (i.e. LSS and CVT) using
extensive empirical evaluation on a dataset we generated using the
CARLA simulator [3] and the nuScenes dataset[1].
4.1 Experimental Setup
Datasets We generate a synthetic dataset with CARLA simula-
tor [3]. The data collection procedure is as follows: We collect 50k
frames across 100 episodes and five ego vehicles in each episode.
Six cameras are mounted to the top of each ego vehicle at different
angles: -60, 0, 60, -120, 120, and 180. For each camera, we gather
RGB images of the road scene with a resolution of 128 × 352 (no
ego vehicle shown in the image) and the corresponding pixel-wise
ground truth depth map, and ground truth semantic segmentation
in the camera view. The ground-truth BEV segmentation is derived
by a camera located 30m above the ground facing down with a
resolution of 200 × 200. Our vehicles drive around in 15 weather
conditions: Default, Clear Noon, Cloudy Noon, Wet Noon, Wet
Cloudy Noon, Mid Rainy Noon, Hard Rain Noon, Soft Rain Noon,
Clear Sunset, Cloudy Sunset, Wet Sunset, Wet Cloudy Sunset, Mid
Rain Sunset, Hard Rain Sunset, and Soft Rain Sunset.

We also conduct a case study on the nuScenes dataset[1], which
consists of image data from 1k scenes. Similar to the CARLA dataset,
the ego vehicle has 6 cameras mounted at similar angles. Each scene
lasts 20 seconds and consists of 40 frames of data. There are 40k total
scenes of data. We use four classes (vehicle, road, lane, background)
to evaluate the performance of BEV semantic segmentation.
Architecture For each uncertainty quantification baseline, we train
two different backbones: Lift Splat Shoot, and Cross View Trans-
former. We also consider supervising camera-view segmentation
using ground truth camera-view segmentation. We train UNet[13]
for camera view semantic segmentation and then feed the prediction
into the backbone as additional channels, that is X𝑘 ∈ R7×𝐻×𝑊 .
The first three channels are original RGB features. The next four
are predicted logits for four target classes from UNet. We train the
backbone and UNet together.
Training setup We train each model for around 15 epochs on the
CARLA Dataset, and 30 epochs on nuScenes. Models with the Lift
Splat Shoot backbone are trained using Adam as the optimizer, with

a learning rate of 1e-3 and a weight decay of 1e-7. Models with
the Cross View Transformer backbone are trained using AdamW
as the optimizer and the one cycle learning rate scheduler, with a
learning rate of 4e-3 and a weight decay of 1e-7. All models were
trained with a batch size of 32, and trained using 2 or 4 GPUs.
Metrics for evaluationWe use the mean intersection over union
(mIOU) score to evaluate the quality of semantic segmentation for
each class. The evaluation of uncertainty quantification perfor-
mance is conducted using the Patch Accuracy vs Patch Uncertainty
(PAvPU) metric proposed in [9], which indicates the probability
of the model being confident in making accurate predictions or
uncertain in the case of inaccurate predictions. We use the same hy-
perparameters as [9] including the patch size and accuracy thresh-
old. In addition, misclassification detection and Out-of-Distribution
(OOD) detection are typical evaluation tasks for assessing the ef-
fectiveness of uncertainty quantification in the image classification
domain. These tasks involve binary classification, and performance
are demonstrated usingArea Under Receiver Operating Characteristic
(AUROC), Area Under Precision Recall (AUPR) curves. We conduct
the pixel-level misclassification detection task detecting whether
a given prediction is incorrect using an uncertainty score, and
the pixel-level Out-of-Distribution (OOD) detection task detecting
whether an input pixel belongs to an OOD class given an estimate
of uncertainty.

4.2 Results on CARLA
In Table 1, we report all quantitative results on 5 baseline uncer-
tainty quantification methods based on two backbones (LSS and
CVT), includingmIOU for semantic segmentation, as well as PAvPU,
AUROC, and PR for the misclassification detection task.

Semantic Segmentation performance Similar to observation
in [12] (LSS), the ’Road’ and the ’Background’ segmentation prove
to be much easier than ’Lane’ and ’Vehicle’ segmentation. Where
the former can achieve over 90% mIOU, ’Lane’ is below 50%. This
is because lane detection necessitates a certain level of semantic
understanding of the environment, while vehicle detection is hin-
dered by the wide range of appearances that vehicles can exhibit.
Additionally, both lanes and vehicles represent a smaller proportion
of pixels within birds eye view, and inaccuracies in the mapping
process will have a greater impact on the overall mIOU for those
clasess. We also observed that CVT-based models achieve a higher
mIOU than LSS-based models, from 8.77% percent to 15.2% percent
on vehicle detection, as well as similar improvements on detection
of other objects. As a more recent work, CVT uses a larger version
of EfficientNet (EfficientNet-B4) as the image backbone compared
to LSS (EfficientNet-B0), and the transformer architecture it uses
already shown remarkable success in various fields. We observe
that adding supervised segmentation improves mIOU for vehicle
detection by 4.47% to 8.66% on LSS, and by 1.11% - 3.72% on CVT,
as well as improvements in other classes.

Uncertainty Quantification Performance In the misclassifi-
cation detection task, the aleatoric uncertainty score is employed
for ranking, while the epistemic uncertainty score is used for the
OOD detection task. For the misclassification task, the evidential
and postnet have the best AUROC, AUPR, and AU-PAvPU. The
deterministic baseline consistently performs the worst. Similar to
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Table 1: Quantitative Results on CARLA dataset

Backbone Baseline Vehicle Road Lane Background Runtime (ms) AUPR AUROC AU-PAvPU

Mean IOU for Semantic Segmentation Average Misclassification

Lift Splat shoot
w/o Segmentation Supervision

Baseline 51.55% 89.96% 39.16% 97.68% 41.03ms 0.333 0.886 0.812

Evidential 51.73% 90.17% 38.91% 97.68% 45.45ms 0.373 0.889 0.838

Postnet 47.60% 89.80% 38.94% 97.68% 39.95ms 0.388 0.882 0.833

Dropout 51.73% 90.12% 37.25% 97.68% 425.08ms 0.348 0.879 0.832

Ensemble 60.96% 91.07% 42.74% 97.68% 146.84ms 0.357 0.896 0.832

Lift Splat shoot
w/ Segmentation Supervision

Baseline 56.28% 90.37% 39.57% 97.74% 66.83ms 0.356 0.894 0.822

Evidential 56.20% 90.41% 39.72% 97.79% 67.01mfs 0.382 0.897 0.848

Postnet 56.26% 90.47% 39.11% 97.71% 72.34ms 0.392 0.899 0.848

Dropout 56.30% 90.55% 39.36% 97.87% 455.77ms 0.359 0.881 0.828

Ensemble 66.47% 91.42% 42.97% 97.40% 234.05ms 0.361 0.893 0.823

Cross View Transformer
w/o Segmentation Supervision

Baseline 63.08% 91.09% 40.17% 98.11% 25.34ms 0.364 0.903 0.838

Evidential 63.50% 91.20% 40.13% 98.12% 27.51ms 0.383 0.910 0.861

Postnet 62.80% 90.98% 39.44% 98.11% 30.31ms 0.399 0.903 0.861

Dropout 63.39% 91.35% 39.04% 98.09% 321.52ms 0.382 0.894 0.844

Ensemble 69.73% 92.46% 45.57% 98.34% 104.90ms 0.367 0.893 0.852

Cross View Transformer
w/ Segmentation Supervision

Baseline 65.07% 91.42% 42.04% 98.39% 52.43ms 0.389 0.936 0.884

Evidential 66.29% 91.52% 41.86% 98.42% 51.99ms 0.412 0.926 0.892

Postnet 64.35% 90.91% 40.04% 98.32% 66.33ms 0.410 0.942 0.892

Dropout 64.50% 91.20% 40.21% 98.36% 594.86ms 0.387 0.933 0.890

Ensemble 73.45% 92.77% 47.63% 98.32% 120.38ms 0.374 0.940 0.893

Figure 2: Visualization of aleatoric uncertainty baselines on samples from the CARLA validation set. The first column is the ground truth birds eye view semantic segmentation. Each pair of
columns after that represent one baseline. The left column represents the birds eye view uncertainty map. The right column represents the misclassified pixels of the prediction from the
baseline, with the lighter color meaning misclassified. The first pair of columns represent baseline, the second represent evidential, third - postnet, fourth - dropout, and fifth - ensemble.
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semantic segmentation performance, CVT-based models perform
better than LSS-based by 1-3% in AUROC, 3-5% AUPR, and 2-3% AU-
PAvPU. Although all models yield less than satisfying performance
comparing to well-studied task such as uncertainty quantification
on image classification, we observe that supervising camera view
segmentation consistently improves uncertainty quantification per-
formance by 1-3% in AUROC, 2-4% in AUPR, and 2-4% in AU-PAvPU,
indicating a promising direction to enhance these models. For the
pixel-level OOD detection task, we observe a high AUROC but
extremely low AUPR value, showing a bad performance with the
current predicted epistemic uncertainty. We guess that this is be-
cause pixel-level OOD detection is quite a difficult task. First, pixel
segmentation is more difficult than object detection. Also, BEV
segmentation involves projecting information to a different view,
increasing the difficulty.

We show a visualization of several samples from the CARLA
dataset in Figure 2. Note that there is one ego car in each sample
and models can not predict it in the BEV due to the lack of its own
information in the camera view. We can see those object boundaries
are easily misclassified and tend to have higher predicted aleatoric
uncertainty, indicating effective aleatoric uncertainty estimation for
all models. Among all uncertainty quantification methods, regions
of high uncertainty predictions from the deterministic baseline are
not quite consistent with the misclassification map, where multiple
correctly classified areas have high aleatoric uncertainty, indicating
bad calibration. Evidential and postnet models tend to have sharper
differences between neighboring pixels than ensemble and dropout
models, which indicates a more concentrated and precise prediction
of aleatoric uncertainty.

Notably, models that utilize a single forward pass, such as de-
terministic baseline, evidential, and postnet, exhibit significantly
less average runtime when compared to models that involve mul-
tiple forward passes, such as dropout and ensemble. The average
runtime for dropout is the highest because a single forward pass
constitutes 20 predictions of the model and a forward pass for an
ensemble consists of forward passes from 5 different models.

4.3 Case study on nuScenes dataset
We show the performance for uncertainty quantification on the
nuScenes dataset with misclassification detection in Figure 3. We
perform this evaluation using the Cross View Transformer back-
bone, as it has better results on the CARLA dataset. We observe that
the evidential and postnet baselines outperform the other baselines,
which is consistent with observations from CARLA dataset.

5 CONCLUSION
This paper presents a comprehensive evaluation of multiple un-
certainty quantification methods for bird’s eye view semantic seg-
mentation. The evaluation is conducted through an empirical study
using two different BEV backbones (LSS and CVT) and two distinct
datasets (CARLA and nuScenes). Our findings indicate that across
all baselines and datasets, the evidential and postnet methods for un-
certainty quantification consistently outperform the other methods.
However, we observe that none of the baselines achieve satisfactory
results, particularly for the task of OOD detection, highlighting
the need for significant improvement in this area. To address this

Figure 3: Misclassification detection result on the nuScenes dataset for all Cross View
Transformer-based models without segmentation supervision: the left one shows the ROC
curve, the middle one shows the PR curve and the right one shows the PAvPU plots based
on different uncertainty thresholds. Numbers next to legend are area under curve values.
Evidential and Postnet still have the highest AUC values for most metrics

limitation, we demonstrate the effectiveness of incorporating su-
pervised camera-view segmentation, which consistently enhances
the overall performance. This approach can be further extended
to explore other supervision techniques as potential avenues for
improving the models.
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