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ABSTRACT
With the advancement of GPS, remote sensing, and computational
simulations, large amounts of geospatial and spatiotemporal data
are being collected at an increasing speed. Such emerging spa-
tiotemporal big data assets, together with the recent progress of
deep learning technologies, provide unique opportunities to trans-
form society. However, it is widely recognized that deep learning
sometimes makes unexpected and incorrect predictions with un-
warranted confidence, causing severe consequences in high-stake
decision-making applications (e.g., disaster management, medical
diagnosis, autonomous driving). Uncertainty quantification (UQ)
aims to estimate a deep learning model’s confidence. This paper
provides a brief overview of UQ of deep learning for spatiotempo-
ral data, including its unique challenges and existing methods. We
particularly focus on the importance of uncertainty sources. We
identify several future research directions for spatiotemporal data.
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1 INTRODUCTION
With the advancement of GPS, remote sensing, and computational
simulations, large amounts of geospatial and spatiotemporal data
are being collected at an increasing speed [33]. Such emerging spa-
tiotemporal big data assets, together with the recent progress of
deep learning technologies, provide unique opportunities to trans-
form society in broad applications. For example, deep learning
is widely used to process spatiotemporal data from radar or lidar
sensors and video cameras to monitor road conditions, detect pedes-
trians, and navigate through traffic [41]. In disaster management,
deep learning systems have been developed to analyze satellite
or drone imagery to enhance situational awareness during deadly
hurricane flood disasters [17]. Although deep learning is known
for higher prediction accuracy compared with many traditional
machine learning techniques, it is widely recognized that they
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can sometimes make unexpected and incorrect predictions with
unwarranted confidence, particularly in complex real-world envi-
ronments [32]. This can have serious consequences in high-stakes
applications like autonomous driving [5], medical diagnosis [2],
and disaster response [1]. Therefore, uncertainty quantification is
essential for a deep learning model to be aware of its limitations
and avoid overconfident predictions.

Applications: One important application is disaster response.
Deep learning has been used to predict the track of hurricanes or
estimate flooded areas, the results of which directly impact decision-
makers in planning evacuation and rescue efforts. Thus, in hurri-
cane tracking, scientists often provide not only the most likely
point of landfall but also provide a “cone of uncertainty” across
other likely points of impact and future trajectories of the storm.
Similarly, in autonomous driving, complex environmental factors
like extreme weather or the ambiguous appearance of nearby ve-
hicles can fool a deep learning model to ignore an obstacle and
cause traffic crashes. In the medical domain, deep learning has
been widely used for medical image analysis, clinical diagnosis, and
treatment planning. Overconfident predictions can not only cause
unnecessary medical expenses but also endanger patient life [26].

Challenges: Uncertainty quantification of deep learning for
spatiotemporal data poses unique challenges due to their special
data characteristics. First, spatiotemporal data violate the common
assumption that samples follow an identical and independent distri-
bution. Instead, implicit dependency structures exist in continuous
space and time (e.g., spatial and temporal autocorrelation, and tem-
poral dynamics) [15, 18, 33]. Thus, the uncertainty quantification
process should be aware of such a dependency structure. Second,
spatiotemporal data have various spatial, temporal, and spectral res-
olutions and diverse sources of noise and errors (e.g., sensor noise,
obstacles, and atmospheric effects in remote sensing signals [25],
GPS errors). Analyzing such data often requires the co-registration
of different layers (e.g., points, lines, polygons, geo-rasters) into the
same spatial reference system. The process is subject to registra-
tion uncertainty due to GPS errors or annotation mistakes in map
generation [13, 16]. Third, spatiotemporal data are heterogeneous
(non-stationary), i.e., the data distribution often varies across dif-
ferent regions or time periods [17]. Thus, a deep learning model
trained in one region (or time) may not generalize well to another
region (or time). Spatiotemporal non-stationary requires charac-
terizing uncertainty due to out-of-distribution samples [33]. This
issue is particularly important when spatial observation samples
are sparsely distributed, causing uncertainty when inferring the
observations at other locations in continuous space [14]. More-
over, modeling such uncertainty needs to consider sample density
both in the non-spatial feature space and in the geographic space.
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Fourth, the large volume of spatiotemporal data requires efficient
computation for prediction and uncertainty quantification, espe-
cially considering the need of capturing long-range and complex
dependencies. Finally, spatiotemporal phenomena are often gov-
erned by physical laws (e.g., water flow, temperature diffusion),
and it is crucial to consider the inherent physics knowledge of the
system when quantifying prediction uncertainty for spatiotemporal
systems.

This paper does not aim to provide a thorough review of un-
certainty quantification methods for deep learning, as this can be
found in several existing surveys [10, 12]. Instead, the paper pro-
vides a brief overview of uncertainty quantification methods for
spatiotemporal data. We first categorize the sources of uncertainty
into two types: data uncertainty and model uncertainty. We delve
into these sources and explore how they can be effectively repre-
sented in neural network models. We briefly summarize existing
methodologies for quantifying uncertainty in deep neural networks,
taking into account the perspective of uncertainty sources. We an-
alyze the advantages and disadvantages of these methodologies,
shedding light on their applicability and limitations in the context
of spatiotemporal data. Finally, we identify several future research
directions related to uncertainty quantification for spatiotemporal
data.

2 TYPES OF UNCERTAINTY SOURCE
In this section categorize the sources of uncertainty in GeoAI into
two types: data uncertainty and model uncertainty. We discuss the
potential sources of each type and its representation.

2.1 Data uncertainty
2.1.1 Source of data uncertainty. Data uncertainty, also known as
aleatoric uncertainty, arises from the inherent randomness, noise,
or overlapping feature distribution within the data, which cannot
be eliminated even with additional training data [40]. Random-
ness or noise in data can stem from various factors during data
acquisition. Uncertainty in the data acquisition process can be at-
tributed to instrument errors, inadequate data sampling frequency,
and transmission errors [11]. Complex environmental conditions,
such as poor weather, can hinder the proper functioning of data
acquisition devices. Additionally, uncertainty can be influenced by
inappropriate sampling methods, data storage, data representation
techniques, and interpolation methods during data processing [40].

In the case of spatiotemporal data collected from space and
airborne platforms like CubeSats and UAVs, data uncertainty can
arise not only from sensor errors in data acquisition devices but
also from the discretization of data in digital formats despite the
underlying phenomenon being continuous [4]. The uncertainty in
representing an object’s movement is also impacted by the sampling
frequency, or sample rate, at which location samples are collected
[31]. Furthermore, uncertainty within the data can accumulate from
multiple sources and propagate into the model.

2.1.2 Data uncertainty representation. In a classification problem,
the data uncertainty arises from the complexity of the data and the
structure of the class boundary in the feature space. The uncertainty
of the class variable, given a specific input instance, is quantified
by the entropy of the true class distribution H[𝑝 (𝑦 |𝒙)] where 𝑦 is

the class label and 𝒙 is the sample feature. The entropy reflects the
randomness of the class distribution due to feature overlap among
samples from different classes as shown in Fig. 1.

For regression problems, data uncertainty arises from the inher-
ent noise or variability in the data generation process. The obser-
vation noise, denoted as 𝜖 (𝒙), is added to the true function 𝑓 (𝒙) to
obtain the target variable 𝑦. There are two types of noise: home-
ostatic noise, which assumes a constant observation noise across
all inputs, and heteroscedastic noise, where the observation noise
varies as a function of the input 𝜖 (𝒙) ∼ 𝑝 (𝜖 |𝒙). The heteroscedastic
noise model is useful when the noise level differs among samples.

2.2 Model uncertainty
2.2.1 Source of model uncertainty. Model uncertainty, also known
as aleatoric uncertainty, encompasses the uncertainty in a model’s
predictions resulting from imperfections in the model training pro-
cess. In the context of spatiotemporal data, model uncertainty can
be attributed to three primary sources: uncertainty in model archi-
tecture, uncertainty in model parameters, and uncertainty due to
dataset distribution mismatch. Uncertainty in model architecture
arises from the lack of understanding regarding the most suitable
model architecture for a given geospatial dataset. For instance, in
deep learning models, uncertainty may exist regarding the optimal
number of neural network layers and neurons in each layer, as an
overly complex model can lead to overfitting. Uncertainty in model
parameters stems from unknown optimal parameter values. This
uncertainty can arise due to factors such as an improper training
strategy, limited geospatial training instances, or convergence to a
local optimum rather than the global minimum of the loss function.
Therefore, the model’s weight values may not accurately represent
the true optimal solution. The last type of model uncertainty is
caused by dataset distribution drift, where the distribution of test
samples differs from that of the training dataset. This issue, known
as out-of-distribution (OOD) data, is not uncommon in real-world
spatiotemporal deployments, as the test cases often involve complex
and diverse scenarios.

2.2.2 Model uncertainty representation. Representing model uncer-
tainty in spatiotemporal data poses challenges due to its multiple
sources. Different methods can be adopted to estimate and represent
uncertainty associated with each type. For uncertainty stemming
from model parameters, Bayesian neural networks (BNNs) are com-
monly used [19]. BNNs assume a prior distribution over the model
parameters and aim to infer the posterior distribution to reflect pa-
rameter uncertainty. Uncertainty arising from model architectures
can be estimated using deep ensembles. This approach involves
constructing an ensemble of neural network architectures, train-
ing each model separately, and generating predictions that form
a distribution on the target variable. The variance of these predic-
tions serves as an estimation of prediction uncertainty. Uncertainty
resulting from dataset distribution mismatch can be assessed by
considering the proximity of new test samples to the training sam-
ples. As the test sample deviates further from the distribution of
training data, the model uncertainty increases.

In summary, model uncertainty in spatiotemporal data arises
from misspecifications in model architectures, parameters, and
dataset distributions. Depending on the specific application, one
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Figure 1: Data uncertainty visualization examples (Different colors represent samples in different classes)

type of uncertainty may dominate over the other, necessitating
tailored methods to address it. The recognition and appropriate
handling of these uncertainties are crucial for robust analysis and
interpretation of data and model outputs in various geospatial fields.

3 METHODOLIES
In the following, the main intuitions and approaches of the three
types are presented and their main advantages and disadvantages
are discussed.

3.1 Model uncertainty
3.1.1 Bayesian Neural Networks: The Bayesian neural network
(BNN) incorporates a prior distribution 𝑝 (𝜽 ) on the neural network
parameters and learns the posterior distribution 𝑝 (𝜽 |X,Y) based on
the training dataset in Eq. 1. However, analytically solving for this
posterior distribution is intractable, and approximation methods
are necessary for prediction in BNN.

𝑝 (𝜽 |X,Y) = 𝑝 (Y |X, 𝜽 )𝑝 (𝜽 )
𝑝 (Y |X) (1)

One approach is to select an approximation 𝑞𝜙 (𝜽 ) from a pa-
rameterized class of distributions Q to approximate the posterior.
Popular optimization methods for selecting 𝑞𝜙 (𝜽 ) include varia-
tional inference [3] and Laplace approximation [8], both of which
impose assumptions and restrictions on the form of the approxi-
mated posterior. However, these restrictions can lead to inaccuracies
in predictions and uncertainty quantification. Another widely used
approach is the MC dropout method [9], which is simple and easy to
implement. It demonstrates that optimizing a neural network with
a dropout layer is equivalent to approximating a BNN using varia-
tional inference on a parametric Bernoulli distribution. Uncertainty
estimation is obtained by computing the variance across multiple
stochastic forward predictions with different dropout masks. How-
ever, MC dropout tends to be less calibrated than other baseline
uncertainty quantification methods in many benchmark datasets.

3.1.2 Ensemble models. Ensemble models are a powerful approach
that involves combining multiple neural network models during
the prediction process. By aggregating the predictions of individ-
ual models, an output distribution is formed. The variability in
predictions among the ensemble models can serve as an indicator
of model uncertainty, where a higher variance implies a greater
degree of uncertainty. To capture this uncertainty stemming from
various factors, several strategies for constructing ensembles can

be employed, such as bootstrapping or combining different neural
network architectures [24].

3.1.3 Sample-density aware neural networks. The mentioned ap-
proaches do not effectively handle model uncertainty arising from
low sample density, where samples lying far from the training set
support may lead to overly confident predictions. To address this,
various approaches have been developed to create sample density-
aware neural networks capable of capturing model uncertainty in
such scenarios. These approaches include Gaussian process mod-
eling (e.g., kriging [28]) for spatial data, deep Gaussian processes,
and distance-aware neural networks. Distance-aware neural net-
works, inspired by Gaussian process models, aim to characterize
uncertainty based on the density of sample features. They utilize
the feature extraction capabilities of deep neural networks (DNNs)
to learn a hidden representation ℎ(𝒙) that reflects meaningful dis-
tances within the data manifold [36].

3.2 Data uncertainty
Generally speaking, data uncertainty is represented by the entropy
of the distribution 𝑝 (𝑦 |𝒙, 𝜽 ), where 𝜽 is the neural network pa-
rameters. Existing approaches for learning this distribution can be
classified into deep discriminative models and generative models.

3.2.1 Deep discriminative models. Deep discriminative models can
be further categorized as parametric or non-parametric based on
the format of the distribution. To quantify data uncertainty, a dis-
criminative model directly outputs a predictive distribution using a
neural network. The distribution can be represented by a parametric
model, which assumes a parameterized family of probability distri-
butions (e.g., Gaussian or mixture Gaussian) whose parameters (e.g.,
mean and variance) are predicted by the neural network [22]. Alter-
natively, a non-parametric model does not make any assumptions
about the underlying distributions and outputs a prediction inter-
val [30, 38]. Prediction intervals provide a lower and upper bound
[𝑦𝑙 , 𝑦𝑢 ], within which the ground truth 𝑦 is expected to fall with a
prescribed confidence level of 1 − 𝛼 (i.e., 𝑝 (𝑦 ∈ [𝑦𝑙 , 𝑦𝑢 ]) > 1 − 𝛼).
However, a drawback is that standard optimization strategies may
not be applicable.

3.2.2 Deep generative models. Deep generative models (DGMs)
are capable of learning the intractable data distribution 𝑝data (𝒙) in
the high-dimensional feature space X ∈ R𝑛 from a large number
of independent and identically distributed observed samples. To
quantify DNN data uncertainty, the basic idea is to employ DGMs
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to learn the predictive distribution 𝑝 (𝑦 |𝒙) using the conditional
deep generative model (cDGM) [34]. Uncertainty quantification
models based on cDGMs aim to learn a conditional density over
the prediction 𝑦, given the input feature 𝒙 . This involves learning a
model 𝑔𝜽 (𝒛, ·) : X→ Y, where the generative model 𝑔(𝒛, 𝒙) with
𝒛 ∼ 𝑝 (𝒛) approximates the true unknown distribution 𝑝true (𝑦 |𝒙).
The variability of the prediction distribution 𝑝 (𝑦 |𝒙) is encoded in
the latent variable 𝒛 and the generative model. During inference,
for any 𝒙 ∈ X, we can generate 𝑚 samples with 𝑦𝑖 = 𝑔𝜽 (𝒛𝑖 , 𝒙),
where 𝒛𝑖 ∼ 𝑝 (𝒛). From these samples {𝑦𝑖 }𝑚𝑖=1, we can quantify the
prediction uncertainty by measuring their variability.

3.3 The combination of model and data
uncertainty

Many frameworks have been proposed to jointly consider both data
and model uncertainty, aiming for more accurate uncertainty quan-
tification. One straightforward approach is to select one method
from each category and combine them within a single framework.
For instance, Bayesian neural network (BNN) models like Monte-
Carlo dropout or ensemble models can be merged with prediction
distributions, where uncertainty can be obtained from the total
variance of the prediction. However, such simple combinations of-
ten introduce significant computational complexity. Alternatively,
other methods have developed evidential deep learning [27], which
integrates both data and model uncertainty within a single deter-
ministic model using evidence theory. This approach offers compu-
tational efficiency, but it requires the design of new optimization
strategies and may not be suitable for certain network architectures.

4 FUTURE DIRECTIONS
4.1 Spatial Sample Density and Nonstationarity
As discussed in the introduction, one major challenge of spatiotem-
poral data is spatiotemporal non-stationarity. The data distribution
can vary from one region (time) to another region (time). Such
phenomena can be characterized as out-of-distribution (OOD) data
or spatiotemporal outliers. Given a training data distribution 𝑝 (𝑥),
the OOD data are those samples that are either unlikely under
the training data distribution or outside the support of 𝑝 (𝑥). Ac-
curate detection of OOD samples is of paramount importance in
spatiotemporal model generalizability. Because the space is con-
tinuous and the boundary of individual homogeneous sub-regions
is implicit, the model needs to learn such spatial patterns in order
to quantify uncertainty due to nonstationarity. Another relevant
source of spaital uncertainty is due to sparse training samples in the
geographical space. This is often due to limited sensor observations.
Traditionally, Gaussian process has been widely used to quantify
such spatial uncertainty in continuous space. However, for deep
neural network models, new techniques are needed that consider
sample density both in the non-spatial feature space and in the
geographic space.

4.2 Spatial Imaging and inverse problem
The goal of the imaging process is to reconstruct an unknown im-
age from measurements, which is an inverse problem commonly
used in medical imaging (e.g., magnetic resonance imaging and

X-ray computed tomography) and geophysical inversion (e.g., seis-
mic inversion) [7]. However, this process is challenging due to the
limited and noisy information used to determine the original im-
age, leading to structured uncertainty and correlations between
nearby pixels in the reconstructed image [22]. To overcome this
issue, current research in uncertainty quantification of inverse prob-
lems employs conditional deep generative models, such as cVAE,
cGAN, and conditional normalizing flow models [6]. These meth-
ods utilize a low-dimensional latent space for image generation but
may overlook unique data characteristics, such as structural con-
straints from domain physics in certain types of image data, such
as remote sensing images, MRI images, or geological subsurface
images [35]. The use of physics-informed models may improve un-
certainty quantification in these cases. It’s promising to incorporate
the physics constraints for quantifying the uncertainty associated
with the imaging process.

4.3 UQ for physics-aware DNN models
Many applications in the field of spatiotemporal data minging
involve physical systems that can be described using principles
such as partial differential equations (PDEs) governing diffusion
processes. While deep learning has proven effective in extracting
complex patterns from data, standard deep neural networks lack ex-
plicit incorporation of the underlying physics [21]. To address this
challenge, physics-informed neural networks (PINNs) have been
developed to integrate physical principles and domain knowledge
into deep learning for consistent predictions [23]. PINNs encode the
governing equations as residual losses to guide the optimization
of neural networks [20], enabling the incorporation of physical
constraints during model training.

However, many physical systems exhibit non-deterministic or
unknown underlying principles. Chaotic and stochastic behavior
is inherent in these systems, as exemplified by weather forecast-
ing and climate prediction, where small perturbations can lead to
significant differences in the predicted state (known as the "but-
terfly effect") [21]. Even with deterministic initial conditions, the
governing equations (e.g., PDEs) driving the system may be sto-
chastic, described by stochastic differential equations. Uncertainty
quantification is crucial for improving the reliability of predictions,
especially under distribution shifts. The uncertainty in modeling
physical systems can arise from multiple sources. First, the initial
and boundary conditions may be non-deterministic, and the system
itself may exhibit chaotic behavior [37]. Second, the underlying
physical principles may not be fully known, or the parameters of
the governing equations may be stochastic, leading to violations of
conservation laws in imperfect systems [39].

These cases highlight the presence of inherent data uncertainty
in stochastic physical systems. Probabilistic models offer a natural
way to model distributions and incorporate stochasticity and uncer-
tainty into neural networks. However, quantifying uncertainty in
PINNs poses specific challenges. It requires simultaneously consid-
ering the physical principles and their uncertainties. Incorporating
physical constraints can help mitigate data and model uncertainty.
Various sources of uncertainty may arise, including randomness in
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the physical system itself, measurement errors, and limited knowl-
edge of the governing equations. One potential approach to un-
certainty quantification in PINNs involves building probabilistic
neural networks that propagate uncertainty from multiple sources
based on deep generative models for structured outputs [29].

5 CONCLUSION
In this paper, we provides a brief overview of UQ of deep learning
for spatiotemporal data, including its unique challenges and existing
methods. We particularly focus on the importance of uncertainty
sources. We also identify several future research directions related
to spatiotemporal data.
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