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ABSTRACT
Traffic signal control (TSC) is a complex and important task that
affects the daily lives of millions of people. Reinforcement Learn-
ing (RL) has shown promising results in optimizing traffic signal
control, but current RL-based TSC methods are mainly trained in
simulation and suffer from the performance gap between simulation
and the real world. In this paper, we propose a simulation-to-real-
world (sim-to-real) transfer approach called UGAT, which transfers
a learned policy trained from a simulated environment to a real-
world environment by dynamically transforming actions in the
simulation with uncertainty to mitigate the domain gap of tran-
sition dynamics. We evaluate our method on a simulated traffic
environment and show that it significantly improves the perfor-
mance of the transferred RL policy in the real world.

CCS CONCEPTS
• Information systems→ Decision support systems.

KEYWORDS
traffic signal control, uncertainty quantification, simulation to real-
ity transfer

1 INTRODUCTION
Traffic Signal Control (TSC) is crucial for improving traffic flow,
reducing congestion in modern transportation systems, and ben-
efiting individuals and society as a whole. Traffic signal control
remains an active research topic because of the high complexity of
the problem. The traffic situations are highly dynamic and require
traffic signal plans to adapt to different situations, making it nec-
essary to develop effective algorithms that can adjust to changing
traffic conditions.

Recent advances in reinforcement learning (RL) techniques have
shown superiority over traditional approaches in TSC [9]. In RL, an
agent aims to learn a policy through trial and error by interacting
with an environment to maximize the cumulative expected reward
over time. The biggest advantage of RL is that it can directly learn
how to generate adaptive signal plans by observing the feedback
from the environment.

One major issue of applying current RL-based traffic signal con-
trol approaches in the real world is that these methods are mostly
∗Corresponding Author

trained in simulation and suffer from the performance gap between
simulation and the real world. Training in the simulation provides
an efficient way to avoid the cost of learning RL-based policies in
the real world. However, due to the high complexity of real-world
dynamics, simulations are not always representative of real-world
scenarios [4], which can limit the performance of RL-based TSC
models in practice. For example, a traffic simulator might have
default acceleration or deceleration settings for vehicles, while in
the real world, the vehicle settings can vary widely depending on
weather conditions, vehicle types, and many other factors. The
inherent mismatches between simulation and real-world hinder
RL-based models trained in simulation from achieving similar per-
formance in the real world, as is shown in Figure 1.

To close this gap, existing literature in TSC has been focusing
on modifying the traffic simulator to better match the real world
with real-world data [14] so that the policy or model can be trans-
ferred from simulation-to-real-world (sim-to-real) without much
performance gap. However, in practice, the internal parameters of
the simulator cannot be easily modified. To address this challenge,
Grounded Action Transformation is a popular technique that seeks
to induce simulator transitions to more closely match the real world.
However, the current GAT technique is mainly applied to robotics,
and few studies have been conducted on the traffic signal control
problem.

In this paper, we present Uncertainty-aware Grounded Action
Transformation (UGAT), an approach that bridges the domain gap
of transition dynamics by dynamically transforming actions in the
simulation with uncertainty. UGAT learns to mitigate the discrep-
ancy between the simulated and real-world dynamics under the
framework of grounded action transformation (GAT), which learns
an inverse model that can generate an action to ground the next
state in the real world with a desired next state predicted by the for-
ward model learned in simulation. Specifically, to avoid enlarging
the transition dynamics gap induced by the grounding actions with
high uncertainty, UGAT dynamically decides when to transform
the actions by quantifying the uncertainty in the forward model.
Our experiments demonstrate the existence of the performance gap
in traffic signal control problems and further show that UGAT has
a good performance in mitigating the gap with higher efficiency
and stability.

https://orcid.org/0009-0000-8631-9634
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Figure 1: The performance gap in sim-to-real transfer and the schematic of GAT and UGAT. Left: The method [13] trained
in simulation has a performance drop when transferred to the real world in all five evaluation metrics in TSC. Middle: GAT
method takes grounded action 𝑎𝑡 when a policy returns an action 𝑎𝑡 from the 𝐸𝑠𝑖𝑚 . Grounded actions taken with high model
uncertainty on 𝑔𝜙 ( ·,· ) will enlarge the transition between 𝑃\ and 𝑃∗, making the gap between 𝐸𝑠𝑖𝑚 and 𝐸𝑟𝑒𝑎𝑙 large and policy
learning step not stable. Right: UGAT quantifies the model’s uncertainty and decide to take or reject the grounded action 𝑎𝑡
based on the current output of model uncertainty 𝑢𝑡 given the current 𝑠𝑡 state and action 𝑎𝑡 . This behavior will mitigate the gap
between 𝑃𝜙 and 𝑃∗ and make the policy learning step stable.

2 PRELIMINARIES
This section formalizes the TSC problem, its RL solutions and in-
troduces the grounded action transformation (GAT) framework for
sim-to-real transfer.

2.1 Concepts of TSC and RL Solutions
In the TSC problem, following existing work [1, 11, 13, 16], each
traffic signal controller decides the phase of an intersection, which
is a set of pre-defined combinations of trafficmovements that do not
conflict while passing through the intersection. Given the current
condition of this intersection, the traffic signal controller will choose
a phase for the next time interval Δ𝑡 to minimize the average queue
length on lanes around this intersection. The TSC problem is defined
as an MDP which could be characterized by M = ⟨S,A, 𝑃, 𝑟, 𝛾⟩
where each S and A are the system state space, and action space,
transition dynamics 𝑃 describes the probability distribution of next
state 𝑠𝑡+1 ∈ S, Reward 𝑟 is a scalar return from the environment,
the 𝜋\ represents policy and 𝛾 is the discount factor.

An RL approach solves this problem by maximizing the long-
term expectation of discounted accumulation reward adjusted by
discount factor 𝛾 . The discounted accumulated reward is

E(𝑠𝑡 ,𝑎𝑡 )∼(𝜋\ ,M) [
𝑇∑︁
𝑡=0

𝛾𝑇−𝑡𝑟𝑡 (𝑠𝑡 , 𝑎𝑡 )] (1)

Since the action space A is discrete, we follow the past work using
Deep Q-network (DQN) [13] to optimize the RL policy. In the past
RL-based TSC works, the above-described procedure is conducted
in the simulation environment 𝐸𝑠𝑖𝑚 .

2.2 Grounded Action Transformation
Grounded action transformation (GAT) is a framework originally
proposed in robotics to improve robotic learning by using trajecto-
ries from the physical world 𝐸𝑟𝑒𝑎𝑙 to modify 𝐸𝑠𝑖𝑚 . Under the GAT
framework, MDP in 𝐸𝑠𝑖𝑚 is imperfect and modifiable, and it can be
parameterized as a transition dynamic 𝑃𝜙 (·|𝑠, 𝑎). Given real-world

datasetD𝑟𝑒𝑎𝑙 = {𝜏1, 𝜏2, . . . , 𝜏 𝐼 }, where 𝜏𝑖 = (𝑠𝑖0, 𝑎
𝑖
0, 𝑠

𝑖
1, . . . , 𝑎

𝑖
𝑇−1, 𝑠

𝑖
𝑇
)

is a trajectory collected by running a policy 𝜋\ in 𝐸𝑟𝑒𝑎𝑙 , GAT aims
to minimize differences between transition dynamics by finding 𝜙∗:

𝜙∗ = argmin
𝜙

∑︁
𝜏𝑖 ∈D𝑟𝑒𝑎𝑙

𝑇−1∑︁
𝑡=0

𝑑 (𝑃∗ (𝑠𝑖𝑡+1 |𝑠
𝑖
𝑡 , 𝑎

𝑖
𝑡 ), 𝑃𝜙 (𝑠𝑖𝑡+1 |𝑠

𝑖
𝑡 , 𝑎

𝑖
𝑡 )) (2)

where 𝑑 (·) is the distance between two dynamics, 𝑃∗ is the real
world transition dynamics, and 𝑃𝜙 is the simulation transition dy-
namics.

To find 𝜙 efficiently, GAT takes the agent’s state 𝑠𝑡 and action 𝑎𝑡
predicted by policy 𝜋\ as input and outputs a grounded action 𝑎𝑡 .
Specifically, it uses an action transformation function parameterized
with 𝜙 : 𝑎𝑡 = 𝑔𝜙 (𝑠𝑡 , 𝑎𝑡 ) = ℎ𝜙− (𝑠𝑡 , 𝑓𝜙+ (𝑠𝑡 , 𝑎𝑡 )) (3)
which includes two specific functions: a forward model 𝑓𝜙+ , and an
inverse model ℎ𝜙− , as is shown in Fig. 1.
• The forward model 𝑓𝜙+ is trained with the data from 𝐸𝑟𝑒𝑎𝑙 , aiming
to predict the next possible state 𝑠𝑡+1 given current state 𝑠𝑡 and
action 𝑎𝑡 : 𝑠𝑡+1 = 𝑓𝜙+ (𝑠𝑡 , 𝑎𝑡 ) (4)
• The inverse model ℎ𝜙− is trained with the data from 𝐸𝑠𝑖𝑚 , aiming
to predict the possible action 𝑎𝑡 that could lead the current state 𝑠𝑡
to the given next state. Specifically, the inverse model in GAT takes
𝑠𝑡+1, the output from the forward model, as its input for the next
state: 𝑎𝑡 = ℎ𝜙− (𝑠𝑡+1, 𝑠𝑡 ) (5)

Given current state 𝑠𝑡 and the action 𝑎𝑡 predicted by the policy
𝜋\ , the grounded action𝑎𝑡 takes place in 𝐸𝑠𝑖𝑚 will make the resulted
𝑠𝑡+1 in 𝐸𝑠𝑖𝑚 close to the predicted next state 𝑠𝑡+1 in 𝐸𝑟𝑒𝑎𝑙 , which
makes the dynamics 𝑃𝜙 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) in simulation close to the real-
world dynamics 𝑃∗ (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). Therefore, the policy 𝜋\ is learned
in 𝐸𝑠𝑖𝑚 with 𝑃𝜙 close to 𝑃∗ will have a smaller performance gap
when transferred to 𝐸𝑟𝑒𝑎𝑙 with 𝑃∗.

3 METHODS
To mitigate the gap in the transition dynamics between traffic
simulations and real-world traffic systems, we use the vanilla GAT
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and analyze its limitations. To overcome the problem in vanilla GAT,
we propose UGAT to further leverage uncertainty quantification to
take grounded action dynamically.

3.1 Vanilla GAT for TSC
We use the vanilla GAT for the traffic signal control problem by
specifying the learning of 𝑓𝜙+ and ℎ𝜙− :
• The forward model 𝑓𝜙+ (𝑠𝑡 , 𝑎𝑡 ) in traffic signal control problem
predicts the next traffic state 𝑠𝑡+1 in the real world given taken
action 𝑎𝑡 and the current traffic state 𝑠𝑡 . We approximate 𝑓𝜙+ with
a deep neural network and optimize 𝜙+ by minimizing the Mean
Squared Error (MSE) loss:

L(𝜙+) = 𝑀𝑆𝐸 (𝑠𝑖𝑡+1, 𝑠
𝑖
𝑡+1) = 𝑀𝑆𝐸 (𝑓𝜙+ (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ), 𝑠𝑖𝑡+1) (6)

where 𝑠𝑖𝑡 , 𝑎
𝑖
𝑡 , 𝑠

𝑖
𝑡+1 are sampled from the trajectories collected

from 𝐸𝑟𝑒𝑎𝑙 .
• The inverse model ℎ𝜙− (𝑠𝑡+1, 𝑠𝑡 ) in traffic signal control predicts the
grounded action 𝑎𝑖𝑡 in simulation 𝐸𝑠𝑖𝑚 to reproduce the same traffic
states 𝑠𝑡+1. We approximate ℎ𝜙− with a deep neural network and
optimize 𝜙− by minimizing the Categorical Cross-Entropy (CCE)
loss since the target 𝑎𝑖𝑡 is a discrete value:

L(𝜙−) = 𝐶𝐶𝐸 (𝑎𝑖𝑡 , 𝑎𝑖𝑡 ) = 𝐶𝐶𝐸 (ℎ𝜙− (𝑠𝑖𝑡+1, 𝑠
𝑖
𝑡 ), 𝑎𝑖𝑡 ) (7)

where 𝑠𝑖𝑡 , 𝑎
𝑖
𝑡 , 𝑠

𝑖
𝑡+1 are sampled from the trajectories collected from

𝐸𝑠𝑖𝑚 .

3.2 Uncertainty-aware GAT
In this section, we will introduce the limitations of the vanilla GAT
and propose an uncertainty-aware method on GAT that can benefit
from quantifying model uncertainty.
3.2.1 Model Uncertainty on 𝑔𝜙 . The vanilla GAT takes super-
vised learning to train the action transformation function 𝑔𝜙 , and
grounded action transformation 𝑎 is taken at each step while im-
proving in the 𝐸𝑠𝑖𝑚 . However, the action transformation function
𝑔𝜙 could have high model uncertainty on unseen state and action
inputs, which is likely to happen during the exploration of RL.
With high model uncertainty on 𝑔𝜙 , the grounded action 𝑎 in Equa-
tion (3) is likely to enlarge the dynamics gap instead of mitigating
it. The enlarged gap will make policy learning unstable and hard to
converge.

To overcome the enlarged gap induced by 𝑎 with high model
uncertainty in 𝑔𝜙 , we need uncertainty quantification methods [5]
to keep track of the uncertainty of 𝑔𝜙 . Specifically, we would like
the action transformation function to output an uncertainty value
𝑢𝑡 in addition to 𝑎𝑡 :

𝑎𝑡 , 𝑢𝑡 = 𝑔𝜙 (𝑠𝑡 , 𝑎𝑡 ) = ℎ𝜙− (𝑓𝜙+ (𝑠𝑡 , 𝑎𝑡 ), 𝑠𝑡 ) (8)
In general, any methods capable of quantifying the uncertainty

of a predicted class from a deep neural network (since ℎ𝜙− is imple-
mented with deep neural networks) could be utilized, like evidential
deep learning (EDL), Concrete Dropout [2], Deep Ensembles [6],
etc. In this paper, we explored different state-of-the-art uncertainty
quantification methods and found out that they all perform well
with our method (their experimental results can be found in Sec-
tion 4.2.4). We adopted EDL as the default in our method as it
performs the best with our method.

Intuitively, during action grounding, whenever model 𝑔𝜙 (𝑠𝑡 , 𝑎𝑡 )
returns a grounded action 𝑎𝑡 , if the uncertainty 𝑢𝑡 is less than the
threshold 𝛼 , the grounded action 𝑎𝑡 will be taken in the simula-
tion environment 𝐸𝑠𝑖𝑚 for policy improvement; otherwise, we will

reject 𝑎𝑡 and take the original 𝑎𝑡 . This uncertainty quantification
allows us to evaluate the reliability of the transformation model
and take grounded actions 𝑎 when the model is certain that the
resulting transition 𝑃𝜙 (𝑠𝑡 , 𝑎𝑡 ) would mirror that of the real-world
environment 𝐸𝑟𝑒𝑎𝑙 transition 𝑃∗ (𝑠𝑡 , 𝑎𝑡 ). This process enables us to
minimize the gap in Equation (3) between the policy training en-
vironment 𝐸𝑠𝑖𝑚 and the policy testing environment 𝐸𝑟𝑒𝑎𝑙 , thereby
mitigating the performance gap.
3.2.2 Dynamic Grounding Rate 𝛼 . The threshold 𝛼 , which we
referred to as the grounding rate, helps us to decide when to filter
out 𝑎𝑡 with uncertainty 𝑢𝑡 . One naive approach of deciding the
grounding rate 𝛼 is to treat it as a hyperparameter for training and
keep it fixed during the training process. However, since 𝑔𝜙 (𝑠𝑡 , 𝑎𝑡 )
keeps being updated during the training process, the model uncer-
tainty of 𝑔𝜙 is dynamically changing. Even with the same 𝑠𝑡 and 𝑎𝑡 ,
the output 𝑢𝑡 and 𝑎𝑡 from 𝑔𝜙 (𝑠𝑡 , 𝑎𝑡 ) could be different in different
training iterations.

An alternative yet feasible approach is to set grounding rate 𝛼
dynamically changing with the model uncertainty during different
training iterations. To dynamically adjust the grounding rate with
the changing of model uncertainty, we keep track of the model
uncertainty 𝑢𝑡 of 𝑔𝜙 (𝑠𝑡 , 𝑎𝑡 ) during each training iteration. At the
end of each iteration 𝑖 , we update the grounding rate 𝛼 for the
next iteration based on the past record of model uncertainty by
calculating the mean:

𝛼 =

∑𝐸
𝑒=1

∑𝑇−1
𝑡=0 𝑢𝑒𝑡

𝑇 × 𝐸
(9)

from the logged uncertainties in the last 𝐸 epochs. This dynamic
grounding rate 𝛼 can synchronously adjust 𝛼 with the update of
𝑔𝜙 and relief efforts on hyper-parameter tuning.

3.3 Training Algorithm
The overall algorithm for UGAT is shown in Algorithm 1. We firstly
pre-train the RL policy 𝜋\ for 𝑀 epochs in the simulation envi-
ronment 𝐸𝑠𝑖𝑚 . Then each training iteration of UGAT starts with
collecting datasets for 𝐸𝑠𝑖𝑚 and 𝐸𝑟𝑒𝑎𝑙 following the data collec-
tion process in [3]. With the collected data, 𝑔𝜙 will be updated by
training the forward model 𝑓𝜙+ and inverse model ℎ𝜙− . With the
updated 𝑔𝜙 , we start to use the policy 𝜋\ to interact with 𝐸𝑠𝑖𝑚 for
policy training. Before the action 𝑎𝑡 outputted by 𝜋\ (𝑠𝑡 ) is taken
into the environment 𝐸𝑠𝑖𝑚 , UGAT grounds the actions through 𝑎𝑡
and 𝑢𝑡 from 𝑔𝜙 (𝑠𝑡 , 𝑎𝑡 ). If the model uncertainty 𝑢𝑡 is greater than
the grounding rate 𝛼 , the grounded action 𝑎𝑡 is rejected and we
execute origin action 𝑎𝑡 in the simulation 𝐸𝑠𝑖𝑚 . Then 𝑢𝑡 is added
into logged uncertainty 𝑈 . The RL policy 𝜋\ updates during the
interaction with 𝐸𝑠𝑖𝑚 . After 𝐸 rounds of intersections, we update 𝛼
with Equation (9) for the next round of policy training.

4 EXPERIMENT AND RESULTS
In this section, we conduct experiments to answer the following
questions:
•RQ1: Does performance gap exist in TSC?
•RQ2: Can UGAT effectively mitigate the performance gap?
•RQ3: How do dynamic grounding rate 𝛼 , uncertainty quantifica-
tion, and action grounding influence the performance of UGAT?
•RQ4:Does UGATmethod perform stably with various uncertainty
quantification methods?
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Algorithm 1: UGAT with uncertainty quantification
Input: Initial policy 𝜋\ , forward model 𝑓𝜙+ , inverse model

ℎ𝜙− , real-world dataset D𝑟𝑒𝑎𝑙 , simulation dataset
D𝑠𝑖𝑚 , grounding rate 𝛼 = inf

Output: Policy 𝜋\ , 𝑓𝜙+ , ℎ𝜙−

1 Pre-train policy 𝜋\ for M iterations in 𝐸𝑠𝑖𝑚

2 for i = 1,2, . . . , I do
3 Rollout policy 𝜋\ in 𝐸𝑠𝑖𝑚 and add data to D𝑠𝑖𝑚

4 Rollout policy 𝜋\ in 𝐸𝑟𝑒𝑎𝑙 and add data to D𝑟𝑒𝑎𝑙

5 # Transformation function update step
6 Update 𝑓𝜙+ with Equation (6)
7 Update ℎ𝜙− with Equation (7)
8 Reset logged uncertainty𝑈 𝑖 = 𝐿𝑖𝑠𝑡 ()
9 # Policy training

10 for e = 1, 2, . . . , E do
11 # Action grounding step
12 for t = 0, 1 ,. . . , T-1 do
13 𝑎𝑡 = 𝜋 (𝑠𝑡 )
14 Calculate 𝑎𝑡 and 𝑢𝑡 with Equation (8)
15 if 𝑢𝑒𝑡 ≥ 𝛼 then
16 𝑎𝑡 = 𝑎𝑡 # Reject grounded action
17 end
18 𝑈 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑢𝑒𝑡 )
19 end
20 # Policy update step
21 Improve policy 𝜋\ with reinforcement learning
22 end
23 Update 𝛼 with Equation (9)
24 end

4.1 Experiment Settings
We introduce the environment setup, commonly used metrics, im-
portant hyperparameters, and model structures.

In this paper, we implement UGAT upon LibSignal [8], an open-
sourced traffic signal control library that integrates multiple sim-
ulation environments. We treat Cityflow [14] as the simulation
environment 𝐸𝑠𝑖𝑚 and SUMO [7] as the real-world environment
𝐸𝑟𝑒𝑎𝑙 . In later sections, we use 𝐸𝑠𝑖𝑚 and 𝐸𝑟𝑒𝑎𝑙 by default unless
specified. To mimic real-world settings, we consider four configu-
rations in SUMO under two types of real-world scenarios: heavy
industry roads and special weather-conditioned roads, with their
specific parameters defined in Table 1.

Table 1: Real-world Configurations for 𝐸𝑟𝑒𝑎𝑙

Setting accel
(m/𝑠2)

decel
(m/𝑠2)

eDecel
(m/𝑠2)

sDelay
(s) Description

Default 2.60 4.50 9.00 0.00 —
V1 1.00 2.50 6.00 0.50 Lighter loaded vehicles
V2 1.00 2.50 6.00 0.75 Heavier loaded vehicles
V3 0.75 3.50 6.00 0.25 Rainy weather
V4 0.50 1.50 2.00 0.50 Snowy weather

4.1.1 Environment Setup. • Default setting 1. The default pa-
rameters for SUMO and CityFlow describe the normal settings of
the vehicle’s movement in 𝐸𝑠𝑖𝑚 .
• Heavy industry roads. We model the places where the majority of
vehicles could be heavy trucks. In Table 1, for the vehicles in𝑉 1 and
𝑉 2, their accelerating, decelerating, and emergency decelerating
rates are more likely to be slower than the default settings.
• Special weather-conditioned roads. We consider 𝑉 3 and 𝑉 4 means
rainy and snowy conditions respectively. In Table 1, the vehicles’
accelerating, decelerating, and emergency decelerating rates are
smaller than the default, and the startup delays are larger. For snowy
weather, the first three rates are smaller than rainy ones, and the
startup delay discrepancy in snowy conditions is extended to mimic
the tire slip.

4.1.2 Evaluation Metrics. Following the literatures in TSC [12,
15], we adopt commonly used traffic signal control metrics: Average
Travel Time (ATT), Throughput (TP), Reward, Queue, Delay. For
ATT, Queue, and Delay, the smaller, the better. for others, the larger,
the better.

In this work, our goal is to mitigate the performance gap of
trained policy 𝜋\ between 𝐸𝑠𝑖𝑚 and 𝐸𝑟𝑒𝑎𝑙 , so we calculate the gap
Δ for each referred metric as 𝐴𝑇𝑇Δ, 𝑇𝑃Δ, 𝑅𝑒𝑤𝑎𝑟𝑑Δ, 𝑄𝑢𝑒𝑢𝑒Δ, and
𝐷𝑒𝑙𝑎𝑦Δ. For certain metric 𝜓 , 𝜓Δ = 𝜓𝑟𝑒𝑎𝑙 −𝜓𝑠𝑖𝑚 . Because in real-
world settings, policy 𝜋\ tends to perform worse than in simulation,
so the 𝐴𝑇𝑇 , 𝑄𝑢𝑒𝑢𝑒 , and 𝐷𝑒𝑙𝑎𝑦 in 𝐸𝑟𝑒𝑎𝑙 are normally larger than
those in 𝐸𝑠𝑖𝑚 . Based on the goal of mitigating the gap, improving
𝜋\ performance in 𝐸𝑠𝑖𝑚 , we expect: for𝐴𝑇𝑇Δ,𝑄𝑢𝑒𝑢𝑒Δ, and𝐷𝑒𝑙𝑎𝑦Δ,
the smaller the better. Because 𝑇𝑃Δ, 𝑅𝑒𝑤𝑎𝑟𝑑Δ will be negative
values, the larger, the better. The forward and inverse models are
implemented with the feed-forward neural network with three
hidden layers, which have 64, 128, and 20 hidden neurons and are
optimized with Adam optimizer.

4.2 Experiment Results
4.2.1 Gap between real-world and simulator (RQ1). To testify
whether the performance gap exists in traffic signal control tasks,
we use the Direct-Transfer method: train a policy model 𝜋𝑡𝑒𝑠𝑡 in
𝐸𝑠𝑖𝑚 by the DQN method for 300 epochs, which guarantees its
training convergence and directly transfer 𝜋𝑡𝑒𝑠𝑡 to 4 different 𝐸𝑟𝑒𝑎𝑙
settings as shown in Table 1.

Table 2: Direct-Transfer and UGAT performance in 𝐸𝑠𝑖𝑚

𝐸𝑛𝑣 𝐴𝑇𝑇 𝑇𝑃 𝑅𝑒𝑤𝑎𝑟𝑑 𝑄𝑢𝑒𝑢𝑒 𝐷𝑒𝑙𝑎𝑦

𝐸𝑠𝑖𝑚 111.23±0.05 1978±1 -39.44±0.03 26.11±0.05 0.62±0.01

The results in Fig. 2 exist 5 metrics showing the performance
on two environments: 𝐸𝑠𝑖𝑚 and 𝐸𝑟𝑒𝑎𝑙 . The blue line is connected
with the 5 metric results in 𝐸𝑠𝑖𝑚 and the orange one represents
the results in 𝐸𝑟𝑒𝑎𝑙 . Compared with the performance in the 𝐸𝑠𝑖𝑚 ,
a clear metrics gap appears when 𝜋𝑡𝑒𝑠𝑡 is applied to 4 𝐸𝑟𝑒𝑎𝑙 set-
tings. Our experiment justifies the existence of performance gaps,
which directs us to further study the method’s generalizability and
mitigate such problem.

1https://sumo.dlr.de/docs/Definition_of_Vehicles,_Vehicle_Types,_and_Routes.html

https://sumo.dlr.de/docs/Definition_of_Vehicles,_Vehicle_Types,_and_Routes.html
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Table 3: The performance using Direct-Transfer method compared with using UGAT method. The (·) shows the metric gap
𝜓Δ from 𝐸𝑟𝑒𝑎𝑙 to 𝐸𝑠𝑖𝑚 and the ± shows the standard deviation with 3 runs. The ↑means that the higher value for the metric
indicates a better performance and ↓means that the lower value indicates a better performance

Setting Direct Transfer UGAT

𝐴𝑇𝑇 (Δ ↓) 𝑇𝑃 (Δ ↑) 𝑅𝑒𝑤𝑎𝑟𝑑 (Δ ↑) 𝑄𝑢𝑒𝑢𝑒 (Δ ↓) 𝐷𝑒𝑙𝑎𝑦 (Δ ↓) 𝐴𝑇𝑇 (Δ ↓) 𝑇𝑃 (Δ ↑) 𝑅𝑒𝑤𝑎𝑟𝑑 (Δ ↑) 𝑄𝑢𝑒𝑢𝑒 (Δ ↓) 𝐷𝑒𝑙𝑎𝑦 (Δ ↓)

V1 158.93(47.69) 1901(-77) -71.55(-32.11) 47.71(21.59) 0.73(0.11) 144.72(33.49)±3.61 1925(-52)±4.58 -59.38(-19.94)±3.08 39.58(13.47)±2.04 0.67(0.05)±0.01
V2 177.27(66.03) 1898(-80) -87.71(-48.27) 58.59(32.47) 0.76(0.14) 164.65(53.52)±12.94 1907(-71)±13.06 -75.18(-35.74±8.37 50.25(24.14)±5.56 0.72(0.10)±0.01
V3 205.86(94.63) 1877(-101) -101.26(-61.82) 67.62(41.51) 0.76(0.14) 183.22(71.99)±13.22 1900(-78)±13.08 -82.38(-42.94)±9.11 55.05(28.94)±6.08 0.72(0.10)±0.01
V4 332.48(221.25) 1735(-252) -126.71(-87.23) 84.53(58.42) 0.83(0.21) 284.26(173.03)±6.67 1794(-184)±12.05 -111.68(-72.24)±7.25 74.54(48.43)±4.82 0.8(0.18)±0.01
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Figure 2: The performance gap using Direct-Transfer to train
in 𝐸𝑠𝑖𝑚 and tested in 4 𝐸𝑟𝑒𝑎𝑙 settings.

4.2.2 Gap mitigating by uncertainty-aware UGAT (RQ2). To
verify whether the UGAT can effectively mitigate the performance
gap, we compare the performance of directly transferring policies
trained in 𝐸𝑠𝑖𝑚 to 𝐸𝑟𝑒𝑎𝑙 with the policies learned under UGAT
in four 𝐸𝑟𝑒𝑎𝑙 settings. Because they are using the same 𝐸𝑠𝑖𝑚 , so
performance in 𝐸𝑠𝑖𝑚 eventually converges to stable results with
tiny variance as shown in Table 2. The (·) in Table 3 describes
the performance gap from 𝐸𝑟𝑒𝑎𝑙 to 𝐸𝑠𝑖𝑚 using the results above
and calculated as𝜓Δ = 𝜓𝑟𝑒𝑎𝑙 −𝜓𝑠𝑖𝑚 . The gap directly reflects the
methods’ ability to generalize from 𝐸𝑠𝑖𝑚 to 𝐸𝑟𝑒𝑎𝑙 . We have the
following observations:

• Compared with the Direct-Transfer method, applying UGAT
mitigates the performance gap Δ: 𝐴𝑇𝑇Δ, 𝑄𝑢𝑒𝑢𝑒Δ, and 𝐷𝑒𝑙𝑎𝑦Δ in
UGAT are smaller than inDirect-Transfer column, and𝑇𝑃Δ,𝑅𝑒𝑤𝑎𝑟𝑑Δ
are the larger.

• On the original metrics of traffic signal control, UGAT could
improve the performance of policy 𝜋𝜙 performance as well. When
comparing the two methods, UGAT could reach much lower 𝐴𝑇𝑇
and higher 𝑇𝑃 than Direct-Transfer.

• In Table 3, the experiments include 5 different metrics across 4
various real-world settings. Based on the reported results, we can
conclude that UGAT is both robust and effective.

Table 4: Ablation Study of UGAT on 𝑉 1

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒
𝐴𝑇𝑇Δ

(Δ ↓)
𝑇𝑃Δ

(Δ ↑)
𝑅𝑒𝑤𝑎𝑟𝑑Δ

(Δ ↑)
𝑄𝑢𝑒𝑢𝑒Δ

(Δ ↓)
𝐷𝑒𝑙𝑎𝑦Δ

(Δ ↓)

UGAT 33.49±3.61 -52±4.58 -19.94±3.08 13.47±2.04 0.05±0.01
w/o dynamic 𝛼 39.12±4.21 -72±7.61 -25.07±5.71 16.88±5.11 0.08±0.01

w/o 𝛼 , uncertainty 44.87±4.81 -73±12.99 -30.59±3.80 20.50±1.97 0.09±0.01
w/o Grounding 47.71±6.73 -77±10.64 -32.11±4.24 21.60±3.12 0.11±0.02

4.2.3 Ablation Study (RQ3). To understand how the dynamic
grounding module, uncertainty quantification module, and action
grounding module influence the method’s performance, we conduct
an ablation study. Note that when the dynamic grounding module
is removed, the grounding rate 𝛼 is set as a static value of 0.5. The
results in Table 4 show that each module contributes to the UGAT
performance.

Table 5: Static vs dynamic 𝛼 on 𝑉 1

𝛼
𝐴𝑇𝑇Δ

(Δ ↓)
𝑇𝑃Δ

(Δ ↑)
𝑅𝑒𝑤𝑎𝑟𝑑Δ

(Δ ↑)
𝑄𝑢𝑒𝑢𝑒Δ

(Δ ↓)
𝐷𝑒𝑙𝑎𝑦Δ

(Δ ↓)

dynamic 33.49±3.61 -52±4.58 -19.94±3.08 13.47±2.04 0.05±0.01
0.2 68.59±7.14 -117±12.53 -40.42±3.92 27.11±4.29 0.12±0.05
0.4 55.87±7.83 -73±13.01 -30.69±4.54 20.30±3.28 0.12±0.01
0.5 39.12±4.21 -72±7.61 -25.07±5.71 16.88±5.11 0.08±0.01
0.6 47.09±2.79 -77±4.68 -34.11±3.99 21.31±2.38 0.10±0.03
0.8 48.53±6.70 -85±9.17 -37.85±6.23 25.60±2.91 0.11±0.01

To understand how the dynamically adjusted grounding rate 𝛼
influences the sim-to-real training, an in-depth ablation study on 𝛼

is further conducted and shown in Table 5. We enable the uncer-
tainty quantification module EDL, and then manually set the 𝛼 from
0.2 to 0.8. During the training, the model will output uncertainty 𝑢,
but the threshold 𝛼 is static, if 𝑢 < 𝛼 then conduct action ground-
ing, otherwise, reject the action as described in Algorithm 1. We
compare the results with UGAT which leverages uncertainty to dy-
namically adjust the 𝛼 . It is explicit that UGAT method guarantees
a good improvement in the model’s performance.

(a) 𝐴𝑇𝑇Δ of 4 methods (b)𝑇𝑃Δ of 4 methods
Figure 3: Uncertainty investigation across 4 methods on 𝑉 1

4.2.4 Different Uncertainty Methods in UGAT (RQ4). In pre-
vious experiments, we use the uncertainty quantification method
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EDL [10]. To better understand the benefit of model uncertainty, we
conduct experiments with other uncertainty quantification meth-
ods including EDL, Concrete Dropout [2], Deep Ensembles [6] to
compare them with the method removed uncertainty module. In
Fig. 3, w/o is the version without uncertainty methods, and the
other three are EDL, Deep Ensembles (D_ES), and MC Dropout
(MC_DP), the 𝐴𝑇𝑇Δ is calculated as𝜓Δ = 𝜓𝑟𝑒𝑎𝑙 −𝜓𝑠𝑖𝑚 , the smaller,
the better, and for 𝑇𝑃Δ, the larger the better. The results show that
the explored model uncertainty quantification methods consistently
reduces the performance gap, and the EDL performs best.

5 CONCLUSION
In this paper, we present the existence of the performance gap in
traffic signal control problems and propose an uncertainty-aware
grounding action transformation method (UGAT) that can dynami-
cally transform actions in the simulation with uncertainty to miti-
gate the discrepancy between simulated and real-world dynamics.
The experiments demonstrate that UGAT has an excellent perfor-
mance in bridging the performance gap with higher efficiency and
stability. This research is a step towards improving the real-world
applicability of RL-based TSC models.
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