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Abstract

Research and applications involving Out-of-Distribution De-
tection (OOD) on graph-structured data are proving criti-
cal. Existing OOD detection methods on graphs do not ap-
ply to multi-label settings. There are other semi-supervised
node classification methods that do not distinguish OOD
nodes from those in distribution (ID). This paper proposes
an Evidence-Based Out-of-Distribution Detection method for
multi-label graphs based on Evidential Deep Learning (EDL).
The evidence for multiple labels is predicted by Multi-Label
Evidential Graph Neural Networks (ML-EGNNs) with Beta
Loss. Multi-label opinions are fused using the Joint Be-
lief by comultiplication. As an additional step, we introduce
a kernel-based node positive evidence estimation (KNPE)
method that is designed to reduce errors in estimating posi-
tive evidence. The results of our experiments show that our
multi-label OOD detection model is both effective and effi-
cient.

Introduction
Many real-world application scenarios can be represented
by graph-structured data, ranging from natural networks to
social networks. In graph scenarios, there are usually only
a subset of nodes are labeled, and the inherent multi-label
properties of nodes are inevitable. For example, in social
networks, one user usually has more than one interest (Wang
and Sukthankar 2013). In a Protein-Protein-Interaction (PPI)
network, one protein can perform multiple functions (Wu
et al. 2014). Further, if unlabeled nodes are ubiquitous, then
the existence of unknown labels should be unavoidable, i.e.,
some unlabeled nodes may be out-of-distribution (OOD). As
shown in Fig 1, in a PPI network, Function 3 and Function 4
are unseen for Labeled Node A, B and C. A multi-class clas-
sification method classifies OOD Unlabeled Node H and F
into one or more In-Distribution Functions(like Function 1
and Function 2). This leads to the model unable to detect the
unknown functions. Hence, it is necessary to study the OOD
detection problem on multi-label graphs.

Recently, some semi-supervised learning methods have
been proposed for multi-label node classification on
graphs (Song et al. 2021; Zhou et al. 2021; Akujuobi et al.

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

B

A

C

D

E

F

H
ID Labeled Protein

ID Unlabeled Protein

OOD Unlabeled Protein

Function 1 (ID)

Function 2 (ID)

Function 3 (OOD)

Function 4 (OOD)

Not Belong to

Unseen Function

Detecting 
Unknown Functions

Figure 1: For a Protein-Protein-Interaction network, nodes
represent proteins, edges connect pairs of interacting pro-
teins, labels indicate different functions of proteins. There
are three kinds of nodes: In-Distribution Labeled Protein
A, B and C for training; In-Distribution Unlabeled Protein
D and E; Out-of-Distribution Unlabeled Protein F and H.
During the training process, Function 3 and 4 are unseen to
model.

2019), with the purpose of predicting user interests in so-
cial networks or identifying functions of proteins in PPI
networks. However, these methods cannot distinguish OOD
nodes from in-distribution (ID) nodes. Due to the lack of un-
certainty modeling, they will confidently tag an OOD node
only with ID classes from training data without giving useful
estimates of their predictive uncertainty (Ovadia et al. 2019).

Some OOD detection methods (Rong et al. 2019; Hasan-
zadeh et al. 2020; Elinas, Bonilla, and Tiao 2020) based on
uncertainty estimation (Gal and Ghahramani 2016; Laksh-
minarayanan, Pritzel, and Blundell 2017; Liu et al. 2020) are
available for multi-class graphs with one class per node. Be-
sides, there are some evidence-based methods (Zhao et al.
2020; Stadler et al. 2021) proposed for OOD detection on
multi-class graphs with a Dirichlet distribution as conjugate
prior (Sensoy, Kaplan, and Kandemir 2018). Nevertheless,
such methods are not applicable for multi-label graphs. That
is because classification probabilities in multi-label setting
follow binomial distributions, not a categorical distribution,
whose prior is the Beta distribution but not the Dirichlet dis-
tribution.

To address aforementioned problems, we propose a
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Figure 2: Overall framework of our proposed method ML-EGNNs for training and inference.

novel evidence based OOD detection method on multi-label
graphs. Based on Subjective Logic (JSANG 2018), Evidence
is the amount of support collected from data to suggest that
a sample should (or should not) be classified into a specific
class. Under multi-label setting, for each ID class, we define
positive evidence as a measure of the confidence to classify
a sample into this class. While, negative evidence is used to
quantify the objections. In summary, the contribution of this
paper is three-fold:
• We propose a novel problem of out-of-distribution (OOD)

detection on the multi-label graph and develop a novel ev-
idential method for node-level OOD detection. To the best
of our knowledge, this is the first study to detect OOD
nodes with multiple labels on graphs.

• We introduce Multi-Label Evidential Graph Neural Net-
works (ML-EGNNs) with Beta loss to predict uncertainty
for multiple classes. Besides, we define joint belief for
multi-label opinions fusion. Additionally, we develop a
Kernel-based Node Positive Evidence Estimation (KNPE)
method to reduce errors in quantifying positive evidence.

• Experimental results show both the effectiveness and effi-
ciency of our model on multi-label OOD detection.

Methodology
Problem Formulation
Given a multi-label graph G = (V,E,A,X,YL) consist-
ing of a set of nodes V = {1, ..., N} and a set of edges
E ⊂ V × V , where the connections in G can be repre-
sented by the adjacency matrix A ∈ {0, 1}N×N . X =
[xT

1 ,x
T
2 , ...,x

T
N ] is the node feature matrix. YL = {yi|i ∈

L} are the labels of the training nodes L ⊂ V . yi = [0, 1]
K

is the class label of node i, where K is the number of in-
distribution classes. Following the semi-supervised learning
pattern, among all the nodes, L are labeled nodes while the

remaining U = V \L are unlabeled. U = UID + UOOD,
where UID denotes unlabeled ID nodes and UOOD denotes
unlabeled OOD nodes. Here we only consider UOOD as
nodes which do not have any labels in K known classes.
We aim to predict: (1) the class probabilities of U : pU =

{pi ∈ [0, 1]
K |i ∈ U}; (2) the belief estimates: the joint

belief of U : bU = {bi ∈ [0, 1]|i ∈ U}, where bi indicates
the confidence in dividing node i into ID samples.

Multi-Label Evidential Graph Neural Networks
(ML-EGNNs)
Multi-Label Evidence Estimation. Compared with
classical neural networks, Evidential Neural Networks
(ENNs) (Sensoy, Kaplan, and Kandemir 2018) (Hu et al.
2021) do not have a softmax layer, but use an activation
layer (e.g., ReLU) to make sure that the output is non-
negative. To be specific, as shown in Fig.2, Multi-Label
Evidential Graph Neural Networks (ML-EGNNs) are
built by stacking graph convolutional layers and two fully
connected layers (FCs) and ReLU layers, which are taken
as the positive and negative evidence vectors for Beta distri-
bution respectively. Given sample i, let fpos(X,A|θ) and
fneg(X,A|θ) represent the positive and negative evidence
vectors predicted by ML-EGNNs, where θ represents the
network parameters. Then, the two parameters αi and βi of
Beta distribution for node i:

αi = fpos(X,A|θ) + 1,

βi = fneg(X,A|θ) + 1.
(1)

where k indicates the k-th class of total K classes.
Training Loss. With N training samples and K different
classes, a multi-label evidential neural network is trained by
minimizing the Beta loss:

LBeta =

N∑
i=1

K∑
k=1

∫
[BCE (yik, pik)]B (αik, βik) dpik, (2)



where B(αik, βik) is a 2-dimensional Beta function.
BCE(·) denotes the Binary Cross Entropy Loss. Besides,
as the belief and disbelief of label k for sample i, we have:

bik =
αik − 1

αik + βik
, dik =

βik − 1

αik + βik
. (3)

So far, for in-distribution multi-label classification, we set
the positive belief as the probability of class i for sample j,
i.e., αik−1

αik+βik
, without additional time consuming.

Kernel-based Node Positive Evidence Estimation
(KNPE)
We focus on the estimation the prior information of multi-
label evidence. For each pair of training nodes i and j, cal-
culate the node-level distance dij , i.e., the shortest path be-
tween nodes i and j. Then the Gaussian kernel function
is used to estimate the positive distribution effect between
nodes i and j:

g (dij) =
1

σ
√
2π

exp

(
−

d2ij
2σ2

)
, (4)

where σ is the bandwidth parameter. The contribution of
positive evidence estimation for node i from labeled node
j is hij(yi, dij) = [h1

ij , h
2
ij , ..., h

k
ij , ..., h

K
ij ]. And hk

ij is ob-
tained by:

hk
ij =

{
0 yjk = 0,

g (dij) yjk = 1,
(5)

where yj = [yj1, ..., yjk, ..., yjK ] = [0, 1]
K represents the

ID labels of training node j. The prior positive parameter is
estimated as:

α̂i =
∑
j∈L

hij(yj , dij) + 1, (6)

where L is the set of labeled nodes. During the training pro-
cess, we minimize LPE =

∑N
i=1 α̂i log

α̂i

αi
. The total loss

function we use to optimize the model is:

Ltotal = LBeta + λ · LPE , (7)

where λ denotes a trade-off parameter with LPE .

Multi-Label Opinions Fusion
After obtaining separate beliefs of multiple labels, we need
to combine these opinions and quantify a integrate opinion,
i.e., Opinions Fusion. Note that, if a sample belongs to any
label we already know, then it is an ID sample. In other
words, only samples that do not belong to any known cat-
egory should be classified as OOD samples. Hence, naive
operations like summing up all the beliefs are inapplicable
for multi-label setting.
Multi-Label Joint Belief. Inspired by the multiplication in
Subjective Logic (JSANG 2018), a multi-label opinion Ω =
ω1∨ω2∨· · ·∨ωK . Based on that, the multi-label joint belief
over all classes is defined as:

b = b1 ∨ b2 ∨ · · · ∨ bK . (8)

To be specific, we can formulate their joint belief bm∨n =
bm + bn − bmbn.

Experiments
Datasets
The data used to validate our model are required to be graph-
structured and multi-labeled. We collect 5 public available
benchmark datasets to perform our experiments including
DBLP (Akujuobi et al. 2019), Facebook (Zhou et al. 2021),
BlogCatalog (Chen et al. 2018), Flickr (Tang and Liu 2009),
and Yeast (Cheng et al. 2002). The major details of the
datasets are listed in Table1. |V|, |E| and |Y| represent the
number of nodes, the number of edges, and the number of
labels, respectively. |X| denote the dimensions of node fea-
tures. |Yid| and |Yood| denote the number of ID classes and
OOD classes, respectively. |Nid| and |Nood| denote the num-
ber of ID nodes and OOD nodes, respectively.

Baselines and Configurations
The effectiveness of our method is validated using 3
well-known graph neural network models as backbone:
GCN (Kipf and Welling 2016), GAT (Velickovic et al. 2017)
and GraphSAGE (Hamilton, Ying, and Leskovec 2017).
Since they are the most representative models according to
the types of aggregators. Besides, we compare our method
with three state-of-the-art multi-label classification meth-
ods, MLGW (Akujuobi et al. 2019), LANC (Zhou et al.
2021) and MLGD (Song et al. 2021). Also, two OOD de-
tection methods, MC-Dropout (Dropout) (Gal and Ghahra-
mani 2016) (Ryu, Kwon, and Kim 2019) and Deep Ensem-
bles (Ensemble) (Lakshminarayanan, Pritzel, and Blundell
2017), which can be applied on graphs are compared with
our method. For the part of our method, ML-EGNNs use 2
fully connected layers and ReLU layers to obtain the posi-
tive evidence and negative evidence, respectively.

Multi-Label OOD Detection
For multi-label OOD detection, TABLE2 shows the perfor-
mance of each comparing method (mean ± std) in terms
of AUC, respectively. For each backbone, the top-1 model
is bolded. The results show that our method improve the
performance of multi-label OOD detection over all 3 back-
bones. That is because all the backbones are optimized by
BCE loss with softmax layers forehead. Without the con-
straint of Beta prior and ReLU layers to output evidence, it is
difficult to distinguish OOD nodes effectively only accord-
ing to the prediction probability. For the multi-label classifi-
cation methods, they are not designed for OOD setting with
a lack of evaluating uncertainty. Therefore, the performance
of these classification methods in multi-lable OOD detection
is basically the same as that of backbones.

Moreover, compared to Dropout and Ensemble, our
method has better and more stable performance, though it
is slightly inferior on Facebook and BlogCatalog with GAT
and GraphSAGE as backbones. We think this is acceptable
due to the characteristics of different datasets and the stable
performance of our method on the whole. Dropout and En-
semble are widely used for OOD detection. Though they can
be applied on graphs, they still have the defect of being un-
able to model multi-label problems. Generally, our method
works better on multiple datasets and different backbones



Dataset |V| |E| |Y| |X| |Yid| |Yood| |Nid| |Nood|
DBLP 28,702 68,335 4 300 3 1 21, 553 4,539
Facebook 792 14,024 17 319 14 3 524 243
BlogCatalog 10,312 333,983 39 128 25 14 8,513 1,037
Flickr 80,513 5,899,882 195 128 150 45 57,185 14,775
Yeast 681 910 13 200 5 8 138 13

Table 1: Details of 5 benchmark multi-label graph-structured datasets.

Backbone Method AUC
DBLP Facebook BlogCatalog Flickr Yeast

GCN

Backbone 0.518 ±0.006 0.823 ± 0.012 0.423 ± 0.013 0.450 ± 0.006 0.698 ± 0.021
Dropout 0.634 ±0.002 0.503 ± 0.009 0.536 ± 0.010 0.500 ± 0.007 0.530 ± 0.018
Ensemble 0.643 ±0.002 0.507 ± 0.006 0.504 ± 0.004 0.500 ± 0.007 0.583 ± 0.033
Ours 0.655 ± 0.004 0.846 ± 0.048 0.612 ± 0.021 0.552 ± 0.010 0.746 ± 0.021

GAT

Backbone 0.422 ± 0.002 0.425 ± 0.003 0.464 ± 0.001 0.497 ± 0.004 0.646 ± 0.016
Dropout 0.759 ± 0.001 0.913 ± 0.021 0.612 ± 0.027 0.484 ± 0.008 0.542 ± 0.061
Ensemble 0.757 ± 0.003 0.920 ± 0.008 0.577 ± 0.002 0.486 ± 0.003 0.588 ± 0.073
Ours 0.811 ± 0.008 0.922 ± 0.028 0.565 ± 0.028 0.512 ± 0.002 0.763 ± 0.005

GraphSAGE

Backbone 0.489 ± 0.006 0.326 ± 0.041 0.501 ± 0.001 0.500 ± 0.006 0.641 ± 0.023
Dropout 0.768 ± 0.001 0.957 ± 0.007 0.698 ± 0.001 0.492 ± 0.008 0.637 ± 0.065
Ensemble 0.762 ± 00013 0.956 ± 0.005 0.697 ± 0.006 0.492 ± 0.005 0.612 ± 0.020
Ours 0.796 ± 0.001 0.937 ± 0.028 0.615 ± 0.021 0.528 ± 0.008 0.741 ± 0.003

-
MLGW 0.566 ± 0.004 0.497 ± 0.031 0.502 ± 0.002 0.495 ± 0.010 0.538 ± 0.042
LANC 0.494 ± 0.049 0.681 ± 0.008 0.478 ± 0.009 0.507 ± 0.009 0.568 ± 0.014
MLGD 0.512 ± 0.003 0.689 ± 0.007 0.508 ± 0.024 0.511 ± 0.011 0.615 ± 0.014

Table 2: The performance for multi-label OOD detection in terms of AUC (mean ± std).

which proves the effectiveness and the generalization ability
of our model on different benchmarks.

Conclusion
In this work, we first propose and formulate the multi-label
OOD detection problem on graphs. To address this problem,
we introduce a novel evidential method, Multi-Label Evi-
dential Graph Neural Networks (ML-EGNNs) , to predict
uncertainty for multiple classes. Our interpretation of joint
belief combining multiple classes incorporates the idea of
multiplication in Subjective Logic. Besides, a Kernel-based
Node Positive Evidence Estimation (KNPE) method is ap-
plied for estimating prior evidence. Experimental results
prove both the effectiveness and efficiency of our method.
Our study considers OOD nodes which only contain OOD
labels. In the future, we will leverage detection on nodes that
contain both ID labels and OOD labels under multi-label set-
ting, which is a more challenging and untouched issue.

References
Akujuobi, U.; Yufei, H.; Zhang, Q.; and Zhang, X. 2019.
Collaborative graph walk for semi-supervised multi-label
node classification. In 2019 IEEE International Conference
on Data Mining (ICDM), 1–10. IEEE.
Chen, H.; Perozzi, B.; Hu, Y.; and Skiena, S. 2018. Harp:
Hierarchical representation learning for networks. In Pro-

ceedings of the AAAI conference on artificial intelligence,
volume 32.

Cheng, J.; Hatzis, C.; Hayashi, H.; Krogel, M.-A.; Mor-
ishita, S.; Page, D.; and Sese, J. 2002. KDD Cup 2001 re-
port. ACM SIGKDD Explorations Newsletter, 3(2): 47–64.

Elinas, P.; Bonilla, E. V.; and Tiao, L. 2020. Variational in-
ference for graph convolutional networks in the absence of
graph data and adversarial settings. Advances in Neural In-
formation Processing Systems, 33: 18648–18660.

Gal, Y.; and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, 1050–
1059. PMLR.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30.

Hasanzadeh, A.; Hajiramezanali, E.; Boluki, S.; Zhou, M.;
Duffield, N.; Narayanan, K.; and Qian, X. 2020. Bayesian
graph neural networks with adaptive connection sampling.
In International conference on machine learning, 4094–
4104. PMLR.

Hu, Y.; Ou, Y.; Zhao, X.; Cho, J.-H.; and Chen, F. 2021.
Multidimensional uncertainty-aware evidential neural net-
works. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, 7815–7822.



JSANG, A. 2018. Subjective Logic: A formalism for reason-
ing under uncertainty. Springer.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and scalable predictive uncertainty estimation using
deep ensembles. Advances in neural information processing
systems, 30.
Liu, W.; Wang, X.; Owens, J.; and Li, Y. 2020. Energy-based
out-of-distribution detection. Advances in Neural Informa-
tion Processing Systems, 33: 21464–21475.
Ovadia, Y.; Fertig, E.; Ren, J.; Nado, Z.; Sculley, D.;
Nowozin, S.; Dillon, J.; Lakshminarayanan, B.; and Snoek,
J. 2019. Can you trust your model’s uncertainty? evaluat-
ing predictive uncertainty under dataset shift. Advances in
neural information processing systems, 32.
Rong, Y.; Huang, W.; Xu, T.; and Huang, J. 2019. Drope-
dge: Towards deep graph convolutional networks on node
classification. arXiv preprint arXiv:1907.10903.
Ryu, S.; Kwon, Y.; and Kim, W. Y. 2019. Uncertainty quan-
tification of molecular property prediction with Bayesian
neural networks. arXiv preprint arXiv:1903.08375.
Sensoy, M.; Kaplan, L.; and Kandemir, M. 2018. Eviden-
tial deep learning to quantify classification uncertainty. Ad-
vances in neural information processing systems, 31.
Song, Z.; Meng, Z.; Zhang, Y.; and King, I. 2021. Semi-
supervised Multi-label Learning for Graph-structured Data.

In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, 1723–1733.
Stadler, M.; Charpentier, B.; Geisler, S.; Zügner, D.; and
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