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Abstract

Conversational agents like chat bots and voice assistants are
trained to understand and respond to user intents. On encoun-
tering an utterance with an intent different from the ones they
have been trained on, these agents are expected to classify
the intent as “unknown” or “out of domain”. This problem is
known as out of domain (OOD) intent detection. Podolskiy
et al. (2021), showed that Mahalanobis distance can be used
effectively for identifying OOD intents, outperforming com-
peting approaches. However, their method fails to outperform
the baselines in the practically important few-shot setting. In
this paper we analyze the reason for low performance and
propose a covariance corrected Mahalanobis distance for de-
tecting out-of-domain intents.

1 Introduction

Intent classification is a key component of natural language
understanding systems, such as voice assistants and chat
bots. Recent advances in those systems are overwhelm-
ingly contributed by deep learning techniques, that can learn
meaningful feature representations with a minimum amount
of hand-crafting (Chen et al. 2017). Chat bots typically fol-
low the intent-response pattern, where there is a fixed or
context-aware mapping between predicted intents and the
responses. In addition to providing the confidence score for
intent, intent detection models are also expected to produce
an OOD score, that measures the likelihood of an utter-
ance being out-of-domain. Typically, when an utterance is
deemed to OOD, a fallback mechanism is triggered to either
ask a clarifying question or respond with “I don’t know”.
OOD detection can be modeled as a binary classification
task, where we are interested in classifying the utterance
in out-of-domain and in-domain (IND) categories. For good
user experience and user trust it is important to achieve a
strong trade-off between precision and recall of the OOD
classifier.

Recently many methods have been proposed to detect
OOD intents (Podolskiy et al. 2021; Chen and Yu 2021;
Rawat, Hebbalaguppe, and Vig 2021). However, these meth-
ods require access to a large training dataset, either with out-
of-domain examples, or a large unlabeled corpus. In indus-
trial settings it is unreasonable to expect any of those as-
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Figure 1: Performance of OOD detection for various intent
classification datasets when Mahalanobis distance is calcu-
lated using Shrinkage (our proposal) and Maximum Likeli-
hood estimators in 5-shot setting.

sumptions to be met. For example, when bootstrapping a
domain-specific chat bot, there is no access to a large train-
ing dataset of out-of-domain utterances, since the chat bot
has not been in production yet. It is also difficult to obtain a
large corpus of unlabeled domain-specific examples.

Specifically, for conversational agents provided as a ser-
vice, such as Amazon Lex and Google Dialogflow, cus-
tomers can extend the agent’s capabilities by uploading cus-
tom utterances and intents datasets. In those settings both the
training and validation data are scarce.

Podolskiy et al. (2021) showed that Mahalanobis distance
computed on RoBERTa (Liu et al. 2019) embeddings out-
performs baseline methods for OOD detection without us-
ing any additional data. Unfortunately, Mahalanobis dis-
tance performs poorly in low resource settings (Tajwar et al.
2021). In this paper, we identify the reason for the poor per-
formance and propose a new method, that performs OOD



intent detection in low resource settings.

2 Preliminaries and Related Work

The OOD detection task is to classify a test data point into
OOD and IND categories. We can broadly classify the ap-
proaches into two buckets:

 Data-centric: these methods use additional OOD data to
learn representation that can better separate OOD from
IND examples. Additional OOD data is obtained by ei-
ther sampling from a large corpus (Hendrycks, Mazeika,
and Dietterich 2019), by using a language model to gen-
erate sentences (Rawat, Hebbalaguppe, and Vig 2021), or
by mining or filtering examples using sentence similarity
models (Chen and Yu 2021).

* Score-based: these methods compute a score to decide
between the IND and OOD classes. The score can be
computed from the features (Lee et al. 2018), model log-
its (Liu et al. 2020; Liang, Li, and Srikant 2017), or the
norm in the gradients space (Huang, Geng, and Li 2021).

In this work we focus on score-based methods, which
don’t require additional OOD data that makes them attrac-
tive for industrial applications. In the score-based method-
ology, given a test sample x and a decision threshold T, we
are interested in constructing a score function G : z — R,
such that G(z) >= T implies that z is OOD and G(z) < T
implies that x is IND.

Mahalanobis distance: Let FF € R™*? denote n points,
each represented by d dimensional features, and y € [1, C]
the corresponding labels in the set of C' classes. For a test
feature x € R*!, the Mahalanobis distance for OOD de-
tection is defined by

d(z) = min (z — p)TS 2 — pe) (1)
c€[1,C]

where p1, € R4*! is the empirical mean of features of the
corresponding class, and ¥ € R%*? is the feature covariance
matrix. Mahalanobis-based OOD detection method uses a
score function G(z) = d(z).

Besides OOD detection, Mahalanobis distance has
been used to perform pattern recognition (De Maess-
chalck, Jouan-Rimbaud, and Massart 2000), anomaly de-
tection (Zhang et al. 2015) and detecting adversarial ex-
amples (Lee et al. 2018). Mahalanobis distance is known
to performs well for sufficiently large dataset sizes. How-
ever, its performance degrades rapidly in low resource set-
tings (Tajwar et al. 2021).

To the best of our knowledge, there are no score-based
methods specifically designed for few-shot out-of-domain
intent detection.

3 Methodology

Before describing our method, we analyze why Mahalanobis
distance performs worse when the training dataset size is
small. Tajwar et al. (2021) conjectured that poor covariance
estimate in low sample settings leads to bad estimate of Ma-
halanobis distance. The reasoning is that the rank of a d x d
covariance matrix computed on n points in d dimensions
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Figure 2: Performance of Mahalanobis-based OOD detec-
tion on the ROSTD dataset in 5-shot settings, as a function
of the number of data points used for covariance computa-
tion. There is a sharp improvement in AUC with up to 400
data points, and only a modest improvement afterwards.

is bounded from above by min(n — 1, d), since n < d in
few-shot settings, the covariance matrix becomes singular.
Mahalanobis distance uses the inverse of covariance, hence
estimating a “best fit” solution with pseudoinverse calcula-
tion may negatively affect the performance.

To test this hypotheses, we perform a simple experiment:

1. Fine-tune the RoBERTa (Liu et al. 2019) base model on
the ROSTD intent classification dataset in a 5-shot set-
ting. The ROSTD dataset is discussed in Section 4.2, and
the fine-tuning procedure is described in Section 4.1.

2. Extract features from the last hidden layer for the full
training dataset (~30K data points). Note that this full
dataset is unavailable in practical cases, since we only
observe 5 data points.

3. Compute the covariance matrices using various sample
sizes of training features extracted in the previous step.

4. Use the Mahalanobis method for detecting OOD sam-
ples.

Table 1 summarizes the performance of OOD detection
with respect to the metrics discussed in Section 4.2, where
the covariance matrix is computed in small and large data
regimes. We observe that the Mahalanobis distance-based
OOD method trained with only 5 samples per class per-
forms poorly when the covariance is computed using 60 data
points. However, it achieves competitive performance pro-
vided that the covariance matrix was computed using 30K
data points. As expected, the best performance is obtained
when the covariance computation and model training was
performed on the full dataset.

Figure 2 depicts the OOD detection performance, when
the number of data points used for covariance computation
is varied. We observe a sharp improvement in AUC for up
to 400 data points, and only a modest improvement after-
wards. This experiment empirically confirms two assump-
tions. Firstly, the features extracted from a model fine-tuned



Training mode  Covariance data points AUC PR ROC,pd.neg PRROC 404 pos  FPRood neg FPR 04 _pos
5-shot 60 84.98+4.15 94.75+1.53 58.55+8.68 75.42+10.41 37.95+7.57
5-shot 30K 98.92+1.43 99.63+0.49 96.62+4.68 4.9249.87 4.0745.06
Full 30K 99.84+0.1 - 99.54+0.3 1.0+0.5 0.5+04

Table 1: Mahalanobis OOD detection performance on the ROSTD dataset with respect to the number of examples for covariance
estimation and training regimes. Performance figures for the full dataset are taken from Podolskiy et al. (2021).

on only a handful of samples still have sufficient represen-
tational power to separate IND and OOD categories. Sec-
ondly, a non-invertible covariance matrix contributes to the
poor performance in few-shot setting.

To overcome this, we propose to use robust covariance
estimators for covariance computation. This is motivated by
the fact that robust approaches provide a better estimate of
the covariance matrix when n < d, compared to the base-
line Maximum Likelihood estimator (MLE) in the standard
Mahalanobis distance. Intuitively, this is achieved by incor-
porating various prior beliefs about the structure of the fea-
tures space (e.g. shape of the clusters). However, in practice
different assumptions lead to differences in the downstream
performance. Below, we briefly review covariance estima-
tors with their corresponding closed-form expressions listed
in Table 2.

Maximum Likelihood estimator: MLE Y, is con-
ventionally used for computing the Mahalanobis distance.
When »,,, is not invertible, Z;Ll can be estimated with a
pseudoinverse.

Van Ness estimator: the diagonal elements of a covari-
ance matrix represent the variance of individual features,
that is typically non-zero for all elements. Van Ness estima-
tor (Ness 1980) only retains the diagonal elements Yva, Ness
and sets non-diagonal elements to zero.

Shrinkage estimator: Shrinkage methods perform a con-
vex combination of a singular matrix >, and some sta-
ble target matrix. The Shrinkage estimator (Friedman 1989)
Yshrinkage €mploys a diagonal target matrix, where elements
on the diagonal equal to the mean of 3J,,, eigenvalues.

Ledoit-Wolf estimator: Ledoit and Wolf (2004) pro-
posed a method to compute the shrinkage coefficient &, that
minimizes the expected mean square error between Xsprinkage
and the unobserved true covariance matrix 2*. We refer the
interested reader to Ledoit and Wolf (2004, 2003) for the
exact expression for & and its derivation.

Estimator Formula

z

Maximum Likelihood X, = % ‘ (2; — ) (2, — )T

7

I
_

Van Ness EVan Ness — B diag(zm)

2Shrinkage = (1 - a)zm + a%ﬂ

Tr(Zm)
—r=1

Shrinkage

Ledoit-Wolf Y Ledoit-Wolf = (1 — @)Em + &

Table 2: Robust covariance estimators. 5 € Rand e € (0, 1)
are the hyper-parameters of these estimators.

4 Experiments

Low sample covariance matrix estimators van Nesss
Y Shrinkage> and Xpedoit-woif €an be used as drop-in replace-
ments for MLE X, in the Mahalanobis distance. We
compare Mahalanobis distance-based OOD detection
with those 4 alternative covariance estimation methods.
Additionally, we benchmark the candidate methods against
the energy-based OOD detection (Liu et al. 2020), and the
gradient norm approach (Huang, Geng, and Li 2021). Fi-
nally, we compare with the Maximum Softmax Probability
(MSP) approach (Hendrycks and Gimpel 2016), which was
shown to be a strong baseline for OOD detection.

4.1 Training Procedure

In all our experiments, we fine-tune the ROBERTa (Liu et al.
2019) base model for intent classification using the cross-
entropy loss. We start from model weights which were pre-
trained on five English-language corpora of varying sizes
and domains, totaling over 160GB of uncompressed text.

Fine-tuning was performed using the
AdamW (Loshchilov and Hutter 2018) optimizer with
learning rate of 2e > and linear decay for 45 epochs. We
repeat all experiments 20 times, sampling a new training
set at each iteration. For hyperparameters, we use a fixed
shrinkage coefficient « = 0.1, and a fixed Van Ness hy-
perparameter 5 = 1.0 in all the experiments. As suggested
in Liu et al. (2020); Huang, Geng, and Li (2021), we set
the temperature 7 = 1 for the energy and gradient norm
baselines.

During X -shot training, covariance matrix of size d x d
is computed from a data matrix of size (X - N.) X d, where
d = 768 for RoOBERTa embeddings and [V, is the number of
classes. On each iteration of the experiment, 1) we randomly
sample X data points per class from the training set, and 2)
compute covariance matrix using only X - N, data points
using corresponding estimators.

4.2 Datasets and Metrics
We evaluate our approach on the following datasets:

1. CLINC150 (Larson et al. 2019): was proposed to evalu-
ate the performance of task-oriented dialogue systems on
out-of-domain queries. The dataset contains 150 intents
spanning over 10 domains.

2. ROSTD (Schuster et al. 2018): was developed to test
cross-lingual transfer learning for multilingual task ori-
ented dialog. The dataset was later extended by Gangal
et al. (2019) by adding OOD intents to English language
utterances.



Dataset (5-shot) OOD method AUC 1 PR ROC ,0dp0s T FPR god pos +

ROSTD MLE 85.13+5.41 58.49%+10.74 36.161+9.47
Van Ness 93.87+£3.41  81.70£9.06 20.45+9.70
Shrinkage 94.39+2.88  83.32+7.79 19.254+9.09
Ledoit-wolf ~ 94.334+2.95 83.194+7.90 19.40+9.14
Grad Norm 93.47+3.32  81.04+8.76 22.68+10.06
Energy 93.9243.04 81.204+9.13 20.01+9.03
MSP 92.13+3.41 78.231+8.34 25.694+9.07
SNIPS MLE 76.63+9.47  49.68+13.00 56.53+£11.65
Van Ness 90.46+3.31 73.98+8.21 29.77+8.35
Shrinkage 90.234+3.33  73.354+8.17 30.00+8.40
Ledoit-wolf ~ 90.234+3.34 73.38+8.18 29.91+8.42
Grad Norm 88.87+4.76  72.04+10.92 37.29+15.39
Energy 88.92+5.74 70.32£11.53 33.30+14.38
MSP 89.27+4.05 71.71+8.46 33.14+11.13
ROSTD Coarse ~ MLE 71.3948.70  40.684+9.97 65.87+£12.45
Van Ness 94.79+£2.71  82.83+8.78 16.06+6.93
Shrinkage 94.94+2.85 83.85+8.76 15.924-6.88
Ledoit-wolf ~ 94.93+2.85 83.83+£8.78 15.91+6.84
Grad Norm 92.3843.59  77.691+9.90 23.84+10.32
Energy 93.43+£3.02  78.65+9.55 19.66+7.89
MSP 92.96+2.78  77.05+8.92 19.54+6.46
Clinic 150 MLE 94.34+0.45 78.23+2.07 23.054+2.02
Van Ness 94.4240.39  79.11%£1.60 23.084+2.00
Shrinkage 94.84+0.41 81.44+1.83 21.90+1.88
Ledoit-wolf ~ 94.764+0.42 81.07+1.78 22.29+1.93
Grad Norm 94.94+0.40 81.48+1.67 21.67+2.21
Energy 94.95+0.38 81.56+1.67 21.85+2.23
MSP 94.08+0.42 78.411+1.64 25.21+1.88

Dataset (10-shot)  OOD method AUC 1 PR ROC ,0d.p0s T FPR 404 pos |

ROSTD FINE MLE 94.44+2.45 80.30+£8.35 14.98+5.45
Van Ness 96.79+£1.43  89.04+5.33 10.26+3.25
Shrinkage 97.37+1.23  90.85+4.94 8.524+2.96
Ledoit-wolf ~ 97.27+1.27  90.51+5.05 8.78+3.02
Grad Norm 96.17+£1.42  88.14+4.42 13.33+4.15
Energy 96.98+1.23  89.83+4.49 10.10+3.47
MSP 95.32+1.55 84.32+5.49 13.39+£3.15
SNIPS MLE 85.274+9.24  62.58+13.87 40.23£21.25
Van Ness 90.57+4.45 74.35+£10.99 28.814+9.62
Shrinkage 90.68+4.51 74.79+11.21 28.44+9.77
Ledoit-wolf ~ 90.67+4.51 74.70+11.19 28.48+9.49
Grad Norm 85.73+£7.27 68.93+12.46 51.42+19.06
Energy 89.75+£5.48 73.57£12.16 32.89+15.11
MSP 89.27+4.61 70.81%+10.67 32.63+13.17
ROSTD COARSE  MLE 87.23+8.20 64.96+11.07 35.16+20.79
Van Ness 95.99+£1.87 85.98+6.21 11.40+4.76
Shrinkage 96.48+1.82 87.96+5.92 10.26+4.83
Ledoit-wolf ~ 96.45+1.83  87.86+5.92 10.34+4.83
Grad Norm 93.38+£3.02 81.31+7.46 23.97+13.61
Energy 95.35£2.07 84.01+8.36 13.99+5.55
MSP 94.58+2.21 81.00+7.22 14.53+5.27
CLINIC 150 MLE 96.07+0.25 85.54+1.20 18.03+1.10
Van Ness 95.73£0.26  83.96+1.10 18.94+0.96
Shrinkage 96.05+£0.24  85.55+1.11 18.12+1.04
Ledoit-wolf ~ 96.00+0.24  85.37+1.07 18.30£1.05
Grad Norm 95.81+£0.27 85.30+1.01 18.70£1.19
Energy 95.99+0.24 85.34+1.03 18.54+1.09
MSP 95.25+£0.28 82.59+1.09 20.05+1.19

Table 3: Comparison of covariance-corrected Mahalanobis distance methods for OOD detection with the baselines in 5-shot

and 10-shot settings.

3. ROSTD-COARSE: following Podolskiy et al. (2021),
we also experiment with a coarsened version of ROSTD
with only 3 intent classes. We use the same set of OOD
intents for testing for both fine-grained and coarsened
version of the dataset.

4. SNIPS (Coucke et al. 2018): contains 7 intents with ap-
proximately 2000 utterances per intent. Since the dataset
does not provide IND and OOD split, we follow the pro-
tocol from Podolskiy et al. (2021) by randomly taking 5
intents as IND and the remaining 2 intents as OOD. We
sample different OOD and IND intents on each iteration
of the experiment.

Since OOD detection is framed is a binary classification
problem, we evaluate performance in terms of AUC, PR
ROC, and FPR@95%TPR metrics. For FPR, the decision
threshold is chosen so that the True Positive Rate is 95%.
We omit 95% suffix from the metric names to avoid repeti-
tion in notation. We report measurements for the cases when
the OOD class is treated as positive, and when the OOD
class is treated as negative. This is indicated with ood_pos
and ood_neg suffixes correspondingly.

5 Results

Table 3 compares the performance of different variants of
the Mahalanobis distance on benchmarking datasets. We ob-
serve that covariance corrected methods (Shrinkage, Ledoit-
Wolf and Van Ness) outperform other OOD detection tech-
niques on 3 out of 4 datasets on all metrics of interest. The
table is summarized in Figure 1 for AUC using the MLE and
Shrinkage estimators.

Furthermore, in 5-shot setting the covariance correction
outperforms MLE on all datasets. However, MLE performs
competitively with covariance correction when the number

of samples used for covariance estimation increases. This
phenomenon can be seen for the CLINC150 dataset in 10-
shot setting, where the 768 x 768 dimensional covariance
matrix was computed by using 150 - 10 = 1500 samples
(150 classes and 10 samples per class).

To assess the impact of OOD performance on the number
of intent classes, we train several models by sampling subset
of intents from the CLINC150 dataset. In Figure 3 we ob-
serve that Shrinkage estimator outperforms MLE by a large
margin, when the number of intents is small and it converges
to MLE performance as the number of classes increase. The
effectiveness of OOD detection degrades as the number of
in-domain (IND) classes increases, which is yet another in-
teresting phenomenon. The reason is that, when the number
of OOD samples are fixed, an increase in the size of IND
samples leads to greater confusion with OOD class, because
more samples end up on the IND/OOD boundary. Quantita-
tively, going from 3 to 20 IND classes causes the minimum
distance from a query OOD example to the closest IND cen-
troid decreases by 20%, this confuses the methods that rely
on a fixed score threshold. When all 150 classes are used
then, the average IND-OOD Euclidean distance decreases
by 37%. Moreover, as the amount of data increases, the per-
formance of the robust estimators degrades, but at different
rates.

6 Conclusion

We have demonstrated that in few-shot settings Mahalanobis
distance computed using robust covariance estimators con-
sistently outperforms the Maximum Likelihood estimator
baseline. According to our experiments, the Shrinkage es-
timator excels in 5-shot and 10-shot settings across various
datasets. The suggested approach is computationally cheap,



= Maximum Likelihood
40

= Shrinkage (Proposed) |
MSP

20
iR
| o=~

O/

0 20 40 60 80 100 120 140

Number of classes

F PR neq (lower is better)

10

Figure 3: Performance on the CLINC150 dataset with re-
spect to the number of training classes in 10-shot setting.

with an additional overhead of one matrix-vector multiplica-
tion operation per class, and does not require any auxiliary
data nor modifications to the training procedure.
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