
How to Allocate your Label Budget? Choosing between
Active Learning and Learning to Reject in Anomaly Detection

Lorenzo Perini,1 Daniele Giannuzzi, Jesse Davis 1

1 KU Leuven, Department of Computer Science, DTAI & Leuven.AI, B-3000 Leuven, Belgium
lorenzo.perini@kuleuven.be, danielegiannuzzi1998@gmail.com, jesse.davis@kuleuven.be

Abstract

Anomaly detection attempts at finding examples that deviate
from the expected behaviour. Usually, anomaly detection is
tackled from an unsupervised perspective because anomalous
labels are rare and difficult to acquire. However, the lack of
labels makes the anomaly detector have high uncertainty in
some regions, which usually results in poor predictive perfor-
mance or low user trust in the predictions. One can reduce
such uncertainty by collecting specific labels using Active
Learning (AL), which targets examples close to the detec-
tor’s decision boundary. Alternatively, one can increase the
user trust by allowing the detector to abstain from making
highly uncertain predictions, which is called Learning to Re-
ject (LR). One way to do this is by thresholding the detector’s
uncertainty based on where its performance is low, which re-
quires labels to be evaluated. Although both AL and LR need
labels, they work with different types of labels: AL seeks
strategic labels, which are evidently biased, while LR requires
i.i.d. labels to evaluate the detector’s performance and set the
rejection threshold. Because one usually has a unique label
budget, deciding how to optimally allocate it is challenging.
In this paper, we propose a mixed strategy that, given a budget
of labels, decides in multiple rounds whether to use the bud-
get to collect AL labels or LR labels. The strategy is based
on a reward function that measures the expected gain when
allocating the budget to either side. We evaluate our strategy
on 18 benchmark datasets and compare it to some baselines.

Introduction
Anomaly detection is the task of automatically detect-

ing examples that do not follow expected patterns (Chan-
dola, Banerjee, and Kumar 2009). These examples, named
anomalies, are usually indicative of critical events such as
water leaks in stores (Perini, Vercruyssen, and Davis 2022),
breakdowns in gas turbines (Zhao, Wen, and Li 2016), or
failures in the petroleum extraction (Martı́ et al. 2015). Such
critical events usually come along with elevated (mainte-
nance) costs or with substantial natural damages (e.g., dis-
persion of petroleum or gas). Thus, detecting anomalies in
time is a relevant task that limits such resource waste.

Collecting labels, especially for anomalies, is often a
hard task because anomalies are costly events (e.g., ma-
chine failures cannot be voluntarily induced), or simply

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time-consuming (e.g., you may need to label 100s of exam-
ples before getting an anomaly). Thus, anomaly detection is
often tackled from an unsupervised perspective. However,
the lack of labels usually forces the unsupervised detector
to have high uncertainty on specific regions of the example
space (Perini, Vercruyssen, and Davis 2020). High uncer-
tainty is undesirable because it is often associated with poor
predictive performance or reduced trust in the predictions.

This uncertainty can be tackled in two complementary
ways. On the one hand, one can try to learn a more accurate
detector by acquiring a limited number of labels using Ac-
tive Learning (AL) (Abe, Zadrozny, and Langford 2006). On
the other hand, it is possible to increase the user trust in the
detector’s outputs by allowing the detector to abstain from
making a prediction when it is highly uncertain, which is
called Learning to Reject (LR) (Hendrickx et al. 2021). One
way to do this is to set a rejection threshold on the detector’s
uncertainty based on where its performance is poor (Cortes,
DeSalvo, and Mohri 2016). However, evaluating the detector
performance requires labels.

Both of these approaches rely on labeled data. However,
the types of labels needed for each approach are quite differ-
ent. Many AL strategies rely on biased sampling strategies
such as explicitly targeting acquiring labels, for example, for
which the detector is highly uncertain (i.e., near the detec-
tor’s current decision boundary) as these are known to yield
better performance (Pimentel et al. 2020). Alas, using such
labels to evaluate the detector’s performance, as required
when setting the threshold in LR, will yield a biased per-
formance estimate and hence a sub-optimal threshold. Con-
sequently, if a user has a fixed budget for acquiring labels
there is a tension between collecting (a) strategic labels that
can be used to train a better detector, or (b) i.i.d. labels that
can be used to evaluate performance and set a proper rejec-
tion threshold. Therefore, a data scientist is confronted with
the challenging question of how they should optimally allo-
cate their label budget between these two purposes.

In this paper, we assume that the label budget can be
split and allocated in multiple rounds. We introduce BAL-
LAD (Budget allocation for Active Learning and Learning to
reject in Anomaly Detection) a novel adaptive strategy that,
in each allocation round, (1) measures the potential reward
obtained by assigning the budget to either AL or LR, and (2)
chooses the highest reward option to collect the labels.

Preliminaries and Related Work

Anomaly Detection. Let X be a d−dimensional random
variable with unknown p(X). We are given a dataset D =
{x1, . . . , xn} with n examples and d features is drawn i.i.d.
from p(X). Let V = {xn+1, . . . , xm} ∼i.i.d p(X), m > n,
be a validation set. Let Y be the label random variable, such
that Y |X = x indicates the class label (1 if anomaly, 0 if
normal) for x ∈ Rd. An anomaly detection problem is the
task of finding an anomaly score function h : Rd → R and a
threshold t ∈ R such that Y = h(t)(X), where h(t)(x) = 1
if h(x) ≥ t, 0 otherwise. Usually, one sets t based on the
contamination factor γ, i.e. the proportion of anomalies.

Pool-based Active Learning (AL). The goal of pool-
based AL strategies is to reduce the detector’s uncertainty
by selecting the most informative training instances. The
AL approaches can be classified into 3 categories (Monarch
2021): uncertainty-based sampling strategies aim to select
the unlabeled data samples with the highest uncertainty (Ha-
cohen, Dekel, and Weinshall 2022), diversity strategies cap-
ture the diversity among the training data (Abe, Zadrozny,
and Langford 2006), combined strategies integrate the ad-
vantages of uncertainty-based and diversity-based crite-
ria (Ebert, Fritz, and Schiele 2012).

Learning to Reject (LR). The goal of a detector’s re-
ject option is to abstain from making a prediction when
a detector is too uncertain about predicting a test exam-
ple (Hendrickx et al. 2021; Cortes, DeSalvo, and Mohri
2016). Our goal is to develop a detector-agnostic strategy
that does ambiguity rejection, as novelty rejection would
reject all anomalies. Thus, we use a dependent rejector ar-
chitecture (Chow 1970). We indicate by C(x) the detector’s
confidence for predicting x ∈ V , and with τ ∈ [0, 1] the re-
jection threshold. If the confidence is below τ , the prediction
is rejected ht(x) = ®. Note that for appropriate inference,
we need to collect validation labels randomly (i.i.d.).

A strategy to allocate the label budget
This paper tackles the following problem:
Given: initially unlabeled training set D and validation set

V , the dataset’s contamination factor γ, an anomaly de-
tector h, and a label budget B;

Do: decide whether, in each allocation round k, to acquire
labels for D (AL) or for V (LR).

Both training the detector with more labels (AL) and learn-
ing a threshold using larger validation data (LR) improve the
detector’s performance. However, choosing the side to max-
imize such improvement is challenging for multiple reasons.
First, it requires measuring the reward of either side, i.e. the
expected gain in terms of the detector’s improvement. Sec-
ond, the rewards need to be on a similar scale such that nei-
ther side is privileged during the process. Third, comparing
a standard detector to one with the reject option is challeng-
ing because the latter needs ad-hoc metrics to overcome the
problem of predicting three classes (anomaly, normal, re-
ject) (Nadeem, Zucker, and Hanczar 2009).

In this paper, we introduce BALLAD, a strategy that mea-
sures the reward of allocating the budget for AL, i.e. collect-
ing strategic labels on the training set, and for LR, i.e., col-
lecting random labels on the validation set. Let B = k·b ∈ N
be our labelling budget. We perform k rounds and the la-
bels of b examples are queried in each round. We initialize
the problem by (1) training the detector with no labels and
setting a default rejection threshold, and (2) collecting b ran-
dom labels for V (LR) and for D (AL) for a total of 2b labels.
This allows us to compute the initial rewards by measuring
how the detector varies from (1) to (2): for LR, we mea-
sure the variation after re-setting the validation threshold;
for AL, we measure the variation after re-training the detec-
tor with the new labels. Then, we start the allocation loop. In
each round, we allocate the budget to the option (LR or AL)
with the highest reward, and we update the reward using the
new labels. We propose two alternative reward functions: 1)
the entropy reward looks at the detector’s probabilities, ei-
ther for prediction (AL), or for rejection (LR); 2) the cosine
reward considers the predicted class labels, either anomaly
yes/no (AL), or rejection yes/no (LR).

Measuring the reward
Because we do not know how beneficial the next label al-
location would be for the detector, we look at the past and
measure the effect of the last allocation round. Our challenge
is to design a reward function that reflects the gain when
querying the labels. We use the following methods to derive
the reward for both AL and LR, by using as detector’s prob-
abilities either the probability of predicting anomaly (AL),
or the probability of rejecting the example (LR). Similarly
to Vercruyssen et al. (2022), we consider two scenarios:

Entropy. Adding more labels has the ability to decrease
the overall uncertainty of the anomaly detector. Thus, we
measure the variation of the detector’s probabilities as:

Re(k) = Ex∼X [|H(hk(x))−H(hk−1(x))|] , (1)

where H(h(x)) = −p log2 p is the entropy of the detector’s
probabilities p, and the subscript indicates the query round
(for k > 2). A large difference in entropy means a large
detector variation, which indicates a large impact of the new
labels and, in turn, a large reward Re.

Cosine. More directly, one can measure the impact of the
labels in terms of variation of class predictions. Given the
detector’s probabilities, we threshold them at 0.5 and assign
value 1 to higher probabilities and 0 to lower ones. Thus, we
measure the cosine similarity between different outputs as

Rc(k) = ED∼X

[
1− hk(D) · hk−1(D)

∥hk(D)∥ · ∥hk−1(D)∥

]
, (2)

where h(D) is a vector containing the outputs (0 or 1) by the
detector h, and ∥·∥ is the Euclidean norm. This metric is less
sensitive to little variations in the detector and discriminates
more in case the new labels change the predicted class.

Deriving the detector’s probabilities
Measuring the reward needs some probabilities, which are
not easy to derive due to the partially supervised setting.

For both prediction and rejection, we exploit the squashing
function: given a positive real score s ∈ R+ and a thresh-
old λ ∈ R+, the squashing function Sλ : R+ → (0, 1),

Sλ(s) = 1− 2−
s2

λ2 , maps s to a probability > 0.5 if s > λ,
and ≤ 0.5 otherwise. Roughly speaking, Sλ calibrates the
probabilities by centering λ as the decision threshold.

Detector’s posterior probabilities. Given the contamina-
tion factor γ, a common approach to set the threshold t is
by forcing the detector to have a training positive class rate
equal to γ. Thus, one can center the probabilities to t by
transforming the anomaly scores h(x) through the squash-
ing function:

P(ht(x) = 1) = St(h(x)) s. t. t = Qh(1− γ).

We set t as the 1−γth quantile of the score distribution such
that only a proportion of γ scores have P(ht(x) = 1) ≥ 0.5.

Rejection probabilities. Given a validation set with some
labels, we (1) set a specific detector confidence C(x), and (2)
set the rejection threshold τ ∈ [0, 1]. For the former, we use
the detector’s posterior probabilities:

C(x) = 2×
∣∣P(ht(x) = 1)− 0.5

∣∣ ∈ [0, 1].

Thus, the closer P(ht(x) = 1) is to 0.5 (high uncertainty),
the lower the detector confidence. For the latter, we opti-
mize the threshold τ over the validation set (only the la-
beled examples) by minimizing a cost function M(ht). Fi-
nally, we compute the rejection probabilities by centering 1-
confidence values to the rejection threshold, i.e. by applying
the squashing function

P(ht(x) = ®) = Sτ (1− C(x)).

The cost-based evaluation metric
Given a detector with a reject option and a detector without
it, we cannot compare their performance on the non-rejected
examples, as they would have different test sets. Thus, we
introduce a cost-based evaluation metric. Formally, given a
rejection cost cr > 0, a false positive cost cfp > 0, and a
false negative cost cfn > 0, the detector is evaluated as:

Mh = cr · P(ht(X) = ®) + cfp · P(ht(X) = 1|Y = 0)

+ cfn · P(ht(X) = 0|Y = 1).

Note that we assume cost null for the correct predictions,
while every misprediction as well as the rejection gets pe-
nalized. Because rejecting is assumed to be less costly than
mispredicting, the rejection cost needs to satisfy the inequal-
ity cr ≤ min{cfp × (1− γ), cfn × γ}, otherwise one could
predict either always normal and pay an expected cost of
cfn × γ, or always anomaly and pay cfp × (1− γ).

Experiments
We experimentally answer the following questions:

Q1. Does BALLAD result in lower costs when compared to
using only AL or LR?

Q2. Which reward metric is better?
Q3. Is the reward function on a similar scale for AL and LR?
Q4. How does our strategy behave when varying cfp, cfn ?

Experimental setup
Methods. We compare BALLAD1 to two baselines: ALL-
IN-AL allocates all the budget for active learning and sets
the rejection threshold using the (biased) training labels; on
the contrary, ALL-IN-LR allocates all the budget for learn-
ing to reject and uses an unlabeled training set.

Table 1: Properties of the 18 datasets used.

Dataset # Examples # Features γ

ALOI 12384 27 0.0304
Annthyroid 7129 21 0.0749
Arrhythmia 271 259 0.0996
Cardiotocography 1734 21 0.0496
Glass 214 7 0.0421
InternetAds 1682 1555 0.0499
KDDCup99 48113 40 0.0042
PageBlocks 5473 10 0.1023
PenDigits 9868 16 0.0020
Pima 526 8 0.0494
Shuttle 1013 9 0.0128
SpamBase 2661 57 0.0499
Stamps 340 9 0.0912
WBC 223 9 0.0448
WDBC 367 30 0.0272
WPBC 160 33 0.0562
Waveform 3443 21 0.0290
Wilt 4655 5 0.0199

Data. We carry out our study on 18 publicly available
benchmark datasets, which are widely used in the litera-
ture (Campos et al. 2016). See Table 1 for the properties.

Setup. For each of the 18 benchmark datasets, we go as
follows: (i) we split the dataset into training, validation and
test sets using the proportions 40− 40− 20 (we have a large
validation set to better measure the impact of rejection); (ii)
we fit the anomaly detector on the unlabeled dataset and set
the rejection threshold to the default value of 0.1; (ii) we
allocate a budget b to LR and AL by randomly selecting
the initial examples; (iii) we optimize the rejection thresh-
old and measure the LR reward; (iv) we train the anomaly
detector on the partially labeled training set and measure the
AL reward; (v) we allocate the next round budget b to the
option with the highest reward and repeat (iii) or (iv) until
the whole budget B is used. During each of the steps, we
measure the detector performance on the test set using our
cost function. We set B to the 30% of the training set’s size,
and b to 2% of it, such that we run 15 allocation rounds. We
repeat (i - v) 10 times and report the average results. In total
we run 18× 15× 10 = 2700 experiments.

Costs and hyperparameters. We set cfp = cfn = 1
and cr = γ, following the cost inequality. SSDO with its
default parameters is used as the semi-supervised anomaly
detector (Vercruyssen et al. 2018). We use IFOREST (Liu,
Ting, and Zhou 2008) as its unsupervised prior. We use
Uncertainty Sampling as the active learning strategy (Zhan

1Code available at https://github.com/Lorenzo-Perini/Ballad

et al. 2021), and the entropy as default reward. For set-
ting the rejection threshold, we use Bayesian Optimization
(GP MINIMIZE implemented in SKOPT) with 20 calls and
limit the rejection rate on the validation set to 50%.

Experimental results
Q1. Comparing BALLAD to the ALL-IN strategies. Fig-
ure 1 shows the comparison between BALLAD with the en-
tropy reward and the ALL-IN strategies on the 18 bench-
mark datasets. On 8 datasets (Arrhythmia, Glass, Kdd-
Cup99, Pima, SpamBase, Wbc, Wdbc, Wpbc), BALLAD re-
sults in evident lower costs, although sometimes the differ-
ence is small. On 5 datasets (Cardiotocography, InternetAds,
PageBlocks, Stamps, Waveform) BALLAD performs simi-
lar/worse than ALL-IN-AL. This happens because SSDO has
an overall high performance and a contained uncertainty in
the predictions. On the other hand, in 3 cases (Aloi, Annthy-
roid, Wilt), allocating all the budget for LR has a lower cost.
This is due to the detector being inaccurate and unable to
learn from the training labels, which makes learning an opti-
mal threshold more convenient. As support for this intuition,
we analyze the plain test AUC of SSDO on the whole test
set (no rejection) for each of the three previous cases. By ag-
gregating over the rounds, SSDO obtains an average AUC
equal to 0.86, 0.88, and 0.57 when the best strategy is, re-
spectively, BALLAD, ALL-IN-AL, and ALL-IN-LR. Finally,
BALLAD obtains an overall average cost of 0.043, which is
≈ 20% lower than the baselines’ average cost (0.055 for
ALL-IN-AL, 0.054 for ALL-IN-LR).

Budget Entropy Re Cosine Rc

2% 0.0536 ± 0.0401 0.0399 ± 0.0303
4% 0.0465 ± 0.0330 0.0411 ± 0.0334
6% 0.0443 ± 0.0284 0.0398 ± 0.0321
8% 0.0436 ± 0.0303 0.0399 ± 0.0306

10% 0.0420 ± 0.0299 0.0411 ± 0.0325
12% 0.0416 ± 0.0303 0.0433 ± 0.0347
14% 0.0413 ± 0.0306 0.0448 ± 0.0367
16% 0.0408 ± 0.0288 0.0456 ± 0.0372
18% 0.0403 ± 0.0290 0.0457 ± 0.0355
20% 0.0412 ± 0.0297 0.0451 ± 0.0363
22% 0.0407 ± 0.0301 0.0451 ± 0.0359
24% 0.0421 ± 0.0325 0.0438 ± 0.0361
26% 0.0417 ± 0.0345 0.0438 ± 0.0363
28% 0.0416 ± 0.0332 0.0438 ± 0.0380
30% 0.0418 ± 0.0345 0.0427 ± 0.0354

Table 2: Average (± std) cost per test example over the
datasets grouped by allocation round for each of the two re-
ward functions. For low budgets, the cosine reward obtains
lower costs, while not being competitive for high budgets.

Q2. Which reward function works better? We analyze
both types of reward functions that we introduced in Eq. 1
and Eq. 2. Table 2 shows the mean and standard deviation
of the cost, divided by allocation round. Overall, using the
cosine reward builds a strategy that produces on average low
costs for little budget (≤ 10%), whereas, for a higher bud-

get, the entropy reward obtains better average costs. This is
due to the highly imbalanced choices made by the cosine re-
ward: the strategy opts for AL in 93% of the cases, which
usually improves a lot the detector’s performance with few
labels but tends to produce little effect when enough labels
are given. On the other hand, the entropy reward is more bal-
anced and opts for AL in 63% of the cases. This allows the
detector to keep decreasing the costs while learning during
the allocation rounds and obtain more steady performance.
Q3. Is the entropy reward balanced for AL and LR? Fig-
ure 2 shows the distribution of the difference between AL
and LR entropy rewards over all the 2700 experiments. Neg-
ative values indicate that the LR reward is higher than AL’s
one, while the opposite holds for positive values. Overall,
the median is close to 0, which means that there is no clearly
predominant strategy. Because the left tail of the density is
larger than the right one, we conclude that LR rewards have
higher variability (std = 0.07 vs 0.03).
Q4. The impact of varying cfp, and cfn. In this experi-
ment, we penalize more false positives and false negatives
by setting, one at a time, cfp and cfn to 10. We compare
BALLAD to the two ALL-IN baselines. For cfp = 10, our
strategy is still the best for low budgets (< 15%), reduc-
ing the relative cost by between 5% and 25% with respect
to the runner-up ALL-IN-LR. However, for higher budgets
(> 15%), ALL-IN-LR becomes the best strategy as it re-
duces BALLAD’s cost by around 20% and ALL-IN-AL’s cost
by more than 40%. This happens because the anomaly de-
tector produces too many false positives, which, if rejected,
allow us to reduce the cost. For cfn = 10, BALLAD performs
much better than the baselines, reducing their cost by around
20% (vs ALL-IN-LR) and 24% (vs ALL-IN-AL).

Conclusion
We proposed BALLAD, a novel strategy to decide whether
to allocate the budget for Active Learning (AL), i.e. labeling
strategic training instances, or for Learning to Reject (LR),
i.e. labeling a random validation set. Our key insight is that
we can measure the expected reward when labeling either set
and allocate the label in the next round to the option with the
highest reward. We proposed two reward functions (entropy
and cosine similarity based). Experimentally, we evaluated
BALLAD on 18 datasets, and show that it performs better
than simply allocating all the labels to either AL or LR.

Acknowledgements. This work is supported by an FB
Ph.D. fellowship by FWO-Vlaanderen (grant 1166222N)
[LP], the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” pro-
gramme [JD], and KUL Research Fund iBOF/21/075 [JD].

References
Abe, N.; Zadrozny, B.; and Langford, J. 2006. Outlier detec-
tion by active learning. In Proceedings of ACM SIGKDD.
Campos, G. O.; Zimek, A.; Sander, J.; Campello, R. J.; Mi-
cenková, B.; Schubert, E.; Assent, I.; and Houle, M. E. 2016.
On the evaluation of unsupervised outlier detection: mea-
sures, datasets, and an empirical study. Data mining and
knowledge discovery.

0.03
0.06
0.09
0.12 Aloi

0.03

0.06

0.09

0.12

Ann

0.03

0.06

0.09

0.12

Arr

AL-LR All-in AL All-in LR

0.03

0.06

0.09

0.12

Car

0.03

0.06

0.09

0.12

Glass

0.03

0.06

0.09

0.12

Int

0.03
0.06
0.09
0.12

Co
st

 p
er

 te
st

 e
xa

m
pl

e

Kdd

0.03

0.06

0.09

0.12

Page

0.03

0.06

0.09

0.12

Pen

0.03

0.06

0.09

0.12

Pima

0.03

0.06

0.09

0.12

Shu

0.03

0.06

0.09

0.12

Spam
4 8 12 16 20 24 28

0.03
0.06
0.09
0.12 Stam

4 8 12 16 20 24 28

0.03

0.06

0.09

0.12

Wbc

4 8 12 16 20 24 28

Allocated budget (% of labeled examples)

0.03

0.06

0.09

0.12

Wdbc

4 8 12 16 20 24 28

0.03

0.06

0.09

0.12

Wpbc

4 8 12 16 20 24 28

0.03

0.06

0.09

0.12

Wave

4 8 12 16 20 24 28

0.03

0.06

0.09

0.12

Wilt

Figure 1: Comparison between BALLAD and the ALL-IN strategies on the 18 benchmarks. The x-axis reports the 15 rounds of
2% labels each. The y-axis shows the average cost per test example. BALLAD obtains lower costs in the majority of cases.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
AL reward - LR reward

Density
Median

Figure 2: Distribution of the difference between AL’s and
LR’s entropy reward. The median close to 0 indicates the
absence of a predominant strategy.

Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly
detection: A survey. ACM computing surveys (CSUR).
Chow, C. 1970. On optimum recognition error and reject
tradeoff. IEEE Transactions on information theory.
Cortes, C.; DeSalvo, G.; and Mohri, M. 2016. Learning
with rejection. In International Conference on Algorithmic
Learning Theory. Springer.
Ebert, S.; Fritz, M.; and Schiele, B. 2012. Ralf: A rein-
forced active learning formulation for object class recogni-
tion. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE.
Hacohen, G.; Dekel, A.; and Weinshall, D. 2022. Active
learning on a budget: Opposite strategies suit high and low
budgets. arXiv preprint arXiv:2202.02794.
Hendrickx, K.; Perini, L.; Van der Plas, D.; Meert, W.; and
Davis, J. 2021. Machine learning with a reject option: A
survey. arXiv preprint arXiv:2107.11277.
Liu, F. T.; Ting, K. M.; and Zhou, Z.-H. 2008. Isolation
forest. In 8th IEEE international conference on data mining.
Martı́, L.; Sanchez-Pi, N.; Molina, J. M.; and Garcia, A.

C. B. 2015. Anomaly detection based on sensor data in
petroleum industry applications. Sensors.
Monarch, R. M. 2021. Human-in-the-Loop Machine Learn-
ing: Active learning and annotation for human-centered AI.
Simon and Schuster.
Nadeem, M. S. A.; Zucker, J.-D.; and Hanczar, B. 2009.
Accuracy-rejection curves (ARCs) for comparing classifica-
tion methods with a reject option. In Machine Learning in
Systems Biology. PMLR.
Perini, L.; Vercruyssen, V.; and Davis, J. 2020. Quantify-
ing the confidence of anomaly detectors in their example-
wise predictions. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer.
Perini, L.; Vercruyssen, V.; and Davis, J. 2022. Transfer-
ring the Contamination Factor between Anomaly Detection
Domains by Shape Similarity. In Proceedings of the AAAI
Conference on Artificial Intelligence.
Pimentel, T.; Monteiro, M.; Veloso, A.; and Ziviani, N.
2020. Deep active learning for anomaly detection. In 2020
International Joint Conference on Neural Networks. IEEE.
Vercruyssen, V.; Meert, W.; Verbruggen, G.; Maes, K.;
Baumer, R.; and Davis, J. 2018. Semi-supervised anomaly
detection with an application to water analytics. In 2018
IEEE international conference on data mining (icdm). IEEE.
Vercruyssen, V.; Perini, L.; Meert, W.; and Davis, J.
2022. Multi-domain Active Learning for Semi-supervised
Anomaly Detection. ECML 2022 published proceedings.
Zhan, X.; Liu, H.; Li, Q.; and Chan, A. B. 2021. A Compara-
tive Survey: Benchmarking for Pool-based Active Learning.
In IJCAI.
Zhao, N.; Wen, X.; and Li, S. 2016. A review on gas tur-
bine anomaly detection for implementing health manage-
ment. Turbo Expo: Power for Land, Sea, and Air.

