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Abstract

Though Transformers have achieved promising results in many
computer vision tasks, they tend to be over-confident in pre-
dictions, as the standard Dot Product Self-Attention (DPSA)
can barely preserve distance for unbounded input domain. Ex-
isting uncertainty quantification approaches, such as Deep
Ensemble and MC Dropout, are inapplicable to sizable Vision
Transformers, owing to their high computational and mem-
ory cost. In this paper, we fill this gap by proposing a novel
CoBiLiR Self-Attention module. Specifically, we replace the
dot product similarity with the distance within Banach Space
and also normalize the term by a theoretical lower bound of
the Lipschitz constant. Extensive experiments conducted on
standard vision benchmarks demonstrate that our method out-
performs the state-of-the-art single forward pass approaches
in prediction, calibration, and uncertainty estimation.

1 Introduction
The remarkable performance of deep learning (DL) has made
it widely employed in all kinds of inference and decision
making systems. Despite that, it makes mistakes, making
DL trust and safety an increasingly important topic (Amodei
et al. 2016; Jiang, Kim, and Gupta 2018). Especially when a
DL model’s prediction affects critical decisions, such as self-
driving cars (Huang and Chen 2020) and medical diagnosis
(Esteva et al. 2017). A tempting way to tackle this problem
is for a model to not only achieve high accuracy, but also be
able to quantify its uncertainty over its predictions.

Recently, Vision Transformers (ViT) (Dosovitskiy et al.
2021), which rarely uses convolutional kernels, i.e. the heart
of CNNs, have achieved state-of-the-art performance across
numerous CV tasks and received a lot of attention in the CV
community (Carion et al. 2020). Although ViTs have shown
remarkable predictive performance, like other deep neural
networks (DNNs), they lack proper uncertainty quantification
and are inclined to make overconfident predictions. This
limitation is significant as ViT is becoming the state-of-the-
art basic model in CV. In this paper, we study the under-
explored problem of uncertainty estimation in ViT, which
can help downstream tasks to build reliable models.
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Principled techniques to estimating a deep learning
model’s predictive uncertainty include (1) Bayesian deep
learning (BDL) (Wilson and Izmailov 2020). For example,
Blundell et al. (2015) proposed Bayes by Backprop to quan-
tify the uncertainty of model weights. (2) Ensemble tech-
niques, such as MC dropout (Gal and Ghahramani 2016),
which uses dropout (Srivastava et al. 2014) as a regulariza-
tion term to compute the prediction uncertainty and Deep
Ensembles (Lakshminarayanan, Pritzel, and Blundell 2017).
However, these multiple forward passes methods suffer heavy
memory and computation cost, which limits their adoption
in real-world applications.

Alternatively, uncertainty quantification via single forward-
pass neural networks, which has similar latency as a single
deterministic network, has recently received lots of attention
(Gillioz et al. 2020). SNGP (Liu et al. 2020) replaces the
dense output layer with a Gaussian Process (GP) layer and
applies Spectral Normalization (SN) (Miyato et al. 2018)
to the hidden residual layers. DUE (van Amersfoort et al.
2021) builds upon GPDNN (Bradshaw, de G. Matthews, and
Ghahramani 2017) and introduces additional constraints to
the feature extractor in the form of residual connections in
combination with SN (Miyato et al. 2018). These methods
perform well on uncertainty estimation. However, they only
focus on bounding the Lipschitz constants of certain CNN
modules i.e., convolution and batch normalization (Ioffe and
Szegedy 2015) layers. Moreover, according to Lee et al.
(2021), Transformer blocks are sensitive to the magnitude of
Lipschitz constant, and training will progress slowly when
SN is employed in self-attention modules. In this paper, we
propose CoBiLiR self-attention based Transformer Gaussian
Process, termed TGP, to address the above problems for un-
certainty estimation without sacrificing its predictive ability.

In summary, our contributions are threefold:
• We propose a novel regularization method, termed Co-

BiLiR, to solve the distance-awareness in both aspects of
Lipschitzness and Contraction problems by replacing the
dot product similarity with the distance within Banach
Space and normalizing the term by a theoretical lower
bound of the Lipschitz constant.

• We develop a novel CoBiLiR self-attention based Trans-
former Gaussian Process, i.e. TGP that integrates distance-
preserving hidden mappings in the transformer blocks via
CoBiLiR, and GP as a distance-aware output layer for
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Figure 1: Uncertainty heat map of TGP and baseline approaches on the two moons 2D classification benchmark. Orange and
blue points are positive and negative training samples respectively. Background color visualizes the predictive uncertainty of
each model, where yellow stands for confidence and blue indicates uncertainty. The proposed TGP model (Figure 1(d)) achieves
the closest to ideal uncertainty quantification on this benchmark.

high quality uncertainty estimation.

• We conduct extensive experiments on the commonly-used
uncertainty benchmarks CIFAR-10/-100 vs SVHN and
CIFAR-10/-100 vs CIFAR-100/-10, respectively. Com-
pared to the state-of-the-art approaches, the results demon-
strate the superiority of the proposed TGP model in pre-
diction, calibration, and uncertainty estimation with no
penalty on time complexity.

2 Method
We propose CoBiLiR self-attention based Transformer Gaus-
sian Process (TGP), a novel solution to improve distance
awareness of hidden space in ViT with a Contractive Bi-
Lipschitz Regularization method (CoBiLiR) and a Gaussian
Process Layer. The structure of TGP is built upon the founda-
tion of GPDNN (Bradshaw, de G. Matthews, and Ghahramani
2017).

Contractive Bi-Lipschitz Regularization (CoBiLiR)
Scaled Dot-Product Self-Attention does not satisfy the bi-
Lipschitz condition (See Appendix). To extend the generality
of self-attention with high-quality uncertainty estimation, we
propose a new regularization method (CoBiLiR) by replacing
the self-attention function with a contractive Bi-Lipschitz ex-
pression without losing the original ability of representation.
We will explicitly discuss in separate aspects to see how to
achieve both Lipschitzness and Contraction in our method.

Lipschitzness Following the proof of the statement that
Dot-Product Self-Attention is not Lipschitz by Kim, Papa-
makarios, and Mnih (2021), suppose there exists such map-

ping f(X), X ∈ RN :

f(X) = S ·X = softmax(aX ·X⊤) ·X =

 f1(X)
...

fN (X)


Its Jacobian Matrix is Jf = [Jij ]N×N , each entry can be
written as:

Jij = aX⊤S(i) [EjiX + δijX] + SijI ∈ RN×1

Thus for i = j:

Jii = aX⊤S(i)EiiX + aX⊤S(i)X + Sii (1)

X⊤S(i)X is in the form of a variance of a discrete distri-
bution. When xi = 0 for some i, some entries of the Ja-
cobian of f grow proportionally to the sample variance of
x ̸=i.(The softmax probabilities Si: are constant with respect
to x ̸=i when xi = 0.) This will lead to an unbounded Jaco-
bian matrix. To avoid this pathology, we replace Q ·K⊤ by
b = −∥x⊤

i Q−x⊤
j K∥22 in Attention(X). Here, the new sim-

ilarity measurement lies on the Banach Space (complete vec-
tor space with norm ∥ · ∥), which is a more generalized space
over Hilbert Space (complete inner product space) (Meg-
ginson 2012). This modification gives a strong theoretical
guarantee on Lipschitzness with easy matrix multiplications
during training.

Contraction Contraction of the Scaled Dot-Product Self-
Attention is another crucial issue for achieving well-
calibrated uncertainty. Deriving such contraction scalar re-
quires a theoretical lower bound of Lipschitz constant on the
Dot-Product Self-Attention function. A desirable contraction
scalar could be non-strict but easy to compute during training.



Figure 2: TGP Model Overview: The model prepends a [class] token and turns the input images into the embedding of patches
with positional embedding. In the CoBiLiR Transformer Layer, we apply CoBiLiR function into the Attention Module with the
rest parts same as standard ViT. The first learnable token is fed into the Gaussian Process Layer to get the class prediction. In
the CoBiLiR Attention Module, we first project X into corresponding query, key and value matrices Q, K and V (K = Q).
Then, we feed Q, K, X into the CoBiLiR function 4 and the output is activated through Softmax function. The module returns
the matrix multiplication of the attention map and the value matrix V . With a Gaussian Process Layer with Random Fourier
Features (RFF), the model will output the prediction of classes. In the following experiments, we refer to TGP with various ViT
configurations using the same naming convention (e.g. TGP-Ti, TGP-S, and TGP-B).

Inspired by Theorem B.1 in Appendix, we introduce a
proper regularization scalar function with a Scalar Factor α
by replacing g̃(X) with Q ·K⊤:

c(X) =
α

∥Q∥F · ∥X⊤∥(∞,2)
(2)

α controls the scale of g̃(X) .
Here, we assign it as a hyperparameter in control of the

corresponding Lipschitz constants for proper contraction of
each model. A small alpha result in loss of information while
a large alpha cause the model tending to be non-Lipschitz.

Summary Here is our formal definition of Contractive Bi-
Lipschitz Regularization (CoBiLiR) on the Self-Attention
function:

Sij := b · c(X) = −
α∥x⊤

i WQ − x⊤
j WK∥22

∥Q∥F · ∥X⊤∥(∞,2)
(3)

This pair-wise operation can alternatively be implemented
as a matrix version for improved computational efficiency:

S = −α · ∥Q∥2row − 2QK⊤ + ∥K∥2⊤row

∥Q∥F · ∥X⊤∥(∞,2)
(4)

Gaussian Process Layer
In TGP, to perserve the distance awareness between input test
sample and previously seen training data, we simply replace
the typical dense output layer with a Gaussian Process (GP)
with an RBF kernel following SNGP (Liu et al. 2020). This
approach makes sure the model returns a uniform distribution
over output labels when the input sample is OoD.

To make it end-to-end trainable, the Gaussian Process layer
can be implemented a two-layer network:

logits(x) = Φ(x)β, Φ(x) =

√
2

M
∗ cos(Wx+ b) (5)

Here x is the input, and W and b are frozen weights
initialized randomly from Gaussian and uniform distribu-
tions, respectively. Φ(x) is Random Fourier Features (RFF)
(Williams and Rasmussen 2006). β is the learnable kernel
weight similar to that of a Dense layer. The layer outputs the
class prediction logits(x) ∈ RNumClasses .

3 Experiments
In this section, we conduct ablation studies and compare
TGPs with several SOTA methods. We design ablation exper-
iments including module comparison under ViT-Ti, searching
for a proper scalar factor α and validating the reliability of
pretrained models.

Setup
Benchmarks We evaluate the performance of the proposed
TGP model on the OoD benchmark (Miyato et al. 2018)
using SVHN (Netzer et al. 2011) as the OoD dataset for the
model trained on CIFAR-10/-100 (Krizhevsky 2009). OoD
data is never seen during training, whereas ID samples are
semantically similar to training samples.

Baselines We chose the following methods as baselines to
compare TGP to state-of-the-art approaches for uncertainty
prediction: (1) Deep Ensemble with 5 models (5-Ensemble)
(Lakshminarayanan, Pritzel, and Blundell 2017), (2) SNGP



Method Accuracy (↑) ECE (↓) NLL (↓) OoD AUROC (↑) OoD AUPR (↑)
SVHN CIFAR-100 SVHN CIFAR-100

5-Ensemble∗ 96.6 ± 0.01 0.010 ± 0.001 0.114 ± 0.01 0.967 ± 0.005 - 0.964 ± 0.01 0.888 ± 0.01

DUQ∗ 94.7 ± 0.02 0.034 ± 0.002 0.239 ± 0.02 0.940 ± 0.003 - 0.973 ± 0.01 0.854 ± 0.01
DUE∗ 95.6 ± 0.04 0.018 ± 0.002 0.187 ± 0.01 0.958 ± 0.005 - - -

SNGP∗ 95.9 ± 0.01 0.018 ± 0.001 0.138 ± 0.01 0.940 ± 0.006 - 0.990 ± 0.01 0.905 ± 0.01
TGP-S (ours) 97.2 ± 0.01 0.012 ± 0.001 0.100 ± 0.01 0.983 ± 0.005 0.914 ± 0.01 0.993 ± 0.01 0.911 ± 0.01

Table 1: Comparison between proposed TGP-S and SOTA methods on CIFAR-10 vs SVHN/CIFAR-100 benchmarks. The best
method among single-network approaches is highlighted in bold. ∗Results from the original papers.

Method Accuracy (↑) ECE (↓) NLL (↓) OoD AUROC (↑) OoD AUPR (↑)
SVHN CIFAR-10 SVHN CIFAR-10

5-Ensemble∗ 80.2 ± 0.01 0.021 ± 0.004 0.666 ± 0.02 - - 0.888 ± 0.01 0.780 ± 0.01

DUQ∗ 78.5 ± 0.03 0.119 ± 0.001 0.980 ± 0.02 - - 0.878 ± 0.01 0.732 ± 0.01
SNGP∗ 79.9 ± 0.03 0.025 ± 0.012 0.847 ± 0.01 - - 0.923 ± 0.01 0.801 ± 0.01

TGP-S (ours) 85.2 ± 0.03 0.018 ± 0.005 0.538 ± 0.01 0.896 ± 0.01 0.799 ± 0.01 0.955 ± 0.01 0.777 ± 0.01

Table 2: Comparison between proposed TGP-S and the SOTA methods on CIFAR-100 vs SVHN and CIFAR-100 vs CIFAR-10
benchmark. The best method among single-network approaches is highlighted in bold. ∗Results from the original papers.

(Liu et al. 2020), (3) DUQ (Van Amersfoort et al. 2020) and
(4) DUE (van Amersfoort et al. 2021).

Implementation Details In the following experiments, we
resize input image to 224× 224 pixels and set the patch size
to 16. The ViT model is initialized with weights pre-trained
on ImageNet-1K dataset (Russakovsky et al. 2015) except
for the attention layers. All models are trained for 100 epochs
with 5 different random seeds on 2 NVIDIA A100 GPUs.

Ablation Study
Module Comparison In this section, we compare TGP-Ti
with existing uncertainty estimation approaches applied to
ViT-Ti. For both Standard ViT-Ti and Deep Ensemble we
take the predictive entropy as uncertainty. For SNGP, the
entropy of the average of the Monte Carlo softmax samples
is used as uncertainty. Note that for DUE and SNGP, only the
GP output layers are applied to the ViT-Ti model. We do not
compare with DUE for the CIFAR-100 dataset, as its training
does not converge.

The accuracy, NLL, AUROC, AUPR results are shown in
Appendix. The AUROC metric indicates the quality of uncer-
tainty, since it measures the probability that in-distribution
(ID) and OoD samples can be separated (Mukhoti et al. 2021).
From the results, we have the following observations:

(1) For OoD detection, The proposed TGP model outper-
forms other methods applied to ViT including Deep Ensemble
as well as all single forward pass methods on CIFAR-10 vs
SVHN and CIFAR-100 vs SVHN benchmarks.

(2) Notably, the superior performance in OoD is achieved
without sacrificing TGP’s predictive performance. On the
contrary, TGP even outperforms standard ViT in terms of
classifications accuracy on the CIFAR-100 dataset, making
TGP achieve the best performance in terms of all the metrics
compared with all other single-network methods.

(3) Furthermore, the proposed CoBiLiR self-attention can
be computed efficiently using matrix operations, with min-
imal overhead compared to the original dot-product self-
attention. This ensures TGP’s performance gains come with-
out compromising computation cost.

Comparison with SOTA
Based on the ablation study above, we apply our method
in larger TGP variants for achieving SOTA performance in
prediction, calibration, and uncertainty estimation. Following
Touvron et al. (2022), we adopt an existing training setup,
namely the A3 procedure of Wightman, Touvron, and Jégou
(2021). We adjust the learning rate of the A3 procedure when
training TGPs, since it was originally designed for training
ResNet-50 models. In our experiments, we set the learning
rate to 0.006 for TGP-S when pretraining on ImageNet-1K
and 0.004 while finetuning on CIFAR-10/-100. For TGP-B,
we reduce the learning rate to 0.003 when pretraining on
ImageNet-1K and 0.002 when finetuning on CIFAR-10/-100.

To evaluate the model’s OoD detection performance, we
adopt two OoD tasks suggested by SNGP: (1) using SVHN as
the OoD dataset for a model trained on CIFAR-10/-100; (2)
using CIFAR-100/-10 as the OoD dataset for a model trained
on CIFAR-10/-100, respectively. We select TGP-S to fairly
compare with other SOTA approaches for the following two
reasons. (1) TGP-S has 19.9M parameters while backbones
(WRN-28-10 (Zagoruyko and Komodakis 2016)) used in
DUQ and SNGP has 36.5M parameters. (2) The performance
gap between TGP-S and TGP-B is insignificant, as shown in
Appendix. Table 1 and 2 show the main comparison results.
TGP-S outperforms the other single forward pass approaches
in all the metrics of CIFAR-10 and most of the metrics of
CIFAR-100. Moreover, TGP-S also achieves better results
than 5-Ensemble of WRN-28-10, which requires around 5×
as much time to execute as TGP-S and other single forward



pass approaches.

4 Conclusion
We propose CoBiLiR, an effective regularization method for
ensuring the Bi-Lipschitz constraints and the contraction of
self-attention mappings with theoretical guarantees. The de-
veloped TGP model consists of CoBiLiR self-attention layers
in the ViT and a Gaussian Process output layer, which enables
distance awareness for high quality uncertainty quantification.
The extensive experiments conducted on the various OoD
benchmarks demonstrate the efficiency and effectiveness of
our method. Importantly, the superior performance in OoD is
achieved without sacrificing TGP’s predictive performance.
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