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Abstract

Predictive uncertainty estimation of pre-trained language
models is an important measure of how likely people can
trust their predictions. However, little is known about what
makes a model prediction uncertain. Explaining predictive
uncertainty is an important complement to explaining predic-
tion labels in helping users understand model decision mak-
ing and gaining their trust on model predictions, while has
been largely ignored in prior works. In this work, we propose
to explain the predictive uncertainty of pre-trained language
models by extracting uncertain words from existing model
explanations. We find the uncertain words are those iden-
tified as making negative contributions to prediction labels,
while actually explaining the predictive uncertainty. Experi-
ments show that uncertainty explanations are indispensable
to explaining models and helping humans understand model
prediction behavior.

1 Introduction
Pre-trained language models (e.g., BERT; Devlin et al.
2019) have been indispensable to natural language process-
ing (NLP) due to their remarkable performance (Liu et al.
2019; Yang et al. 2019; Gururangan et al. 2020; Brown et al.
2020). Predictive uncertainty estimation of pre-trained lan-
guage models is an important measure of how likely people
can trust their predictions (Desai and Durrett 2020; Xu, De-
sai, and Durrett 2020).

A typical way of measuring predictive uncertainty is to
calibrate model outputs with the true correctness likelihood
(Guo et al. 2017; Kong et al. 2020; Zhao et al. 2021), so
that the output probabilities well represent the confidence of
model predictions. In this case, higher prediction confidence
indicates lower uncertainty (Xu, Desai, and Durrett 2020;
Jiang et al. 2021).

However, little is known about what makes a model pre-
diction uncertain. Explaining predictive uncertainty is im-
portant to understanding model prediction behavior and
complementary to explaining prediction labels for gaining
users’ trust, while has been largely ignored (Antorán et al.
2020). Most works on model explanations focus on explain-
ing a model from the post-hoc manner by identifying im-
portant features in inputs that contribute to model predicted
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Figure 1: An illustration of model explanation for sentiment
classification, where the model makes the correct prediction
(POSITIVE) with a relatively low confidence 69%. The top
and bottom salient words with respect to the predicted label
are highlighted in blue and red colors respectively, indicating
different sentiment polarities. Darker color implies larger at-
tribution. Removing the two bottom salient words in dashed
boxes can improve the model prediction confidence to 93%.

labels (Ribeiro, Singh, and Guestrin 2016; Lundberg and
Lee 2017; Sundararajan, Taly, and Yan 2017; Chen, Zheng,
and Ji 2020; Chen et al. 2021). Figure 1 shows an exam-
ple of model explanation for sentiment classification, where
the model makes the correct prediction (POSITIVE) with a
relatively low confidence 69%. The top two salient words
highlighted in blue color explain the predicted label. How-
ever, users may still wonder what compromises the predic-
tion confidence?

This work is the first to explain model predictive uncer-
tainty in NLP. Specifically, this work is based on a simple
observation that bottom salient words in model explanations
(e.g., dreadful and hard in Fig. 1) identified as mak-
ing negative contributions to predicted labels actually ex-
plain model predictive uncertainty. The two bottom salient
words in Fig. 1 indicate the opposite sentiment (NEGATIVE)
to the model predicted label. Removing them can improve
the model prediction confidence from 69% to 93%. We ar-
gue that both top and bottom salient words are indispensable
to explaining model predictions. We name top salient words
as important words, explaining model predicted labels; and
bottom salient words as uncertain words, explaining model
predictive uncertainty. In other words, a comprehensive pre-
diction explanation should consist of label explanation with
important words and uncertainty explanation with uncertain
words.

The goal of this work is to demonstrate the benefits of



comprehensive explanations and the necessity of includ-
ing uncertainty explanations. In the empirical study, we
adopt two explanation methods, Leave-one-out (Li, Mon-
roe, and Jurafsky 2016) and Sampling Shapley (Strumbelj
and Kononenko 2010), to explain two pre-trained language
models, BERT (Devlin et al. 2019) and RoBERTa (Liu et al.
2019) on three tasks. Experiments show the effectiveness
of the two methods in identifying uncertain words for ex-
plaining model predictive uncertainty. Besides, human eval-
uations illustrate the indispensability of uncertainty expla-
nations in helping humans understand model prediction be-
havior.

2 Related Work
The problem of predictive uncertainty estimation has been
well studied (Kuleshov and Liang 2015; Gal and Ghahra-
mani 2016; Pereyra et al. 2017; Kumar, Sarawagi, and Jain
2018; Liu et al. 2020; Kong et al. 2020; Jiang et al. 2021).
However, little is known about what causes predictive un-
certainty. Extensive literatures on model explanations focus
on explaining model predicted labels, while ignoring predic-
tive uncertainty (Ribeiro, Singh, and Guestrin 2016; Lund-
berg and Lee 2017; Sundararajan, Taly, and Yan 2017; Chen,
Zheng, and Ji 2020; Chen et al. 2021). However, explain-
ing predictive uncertainty is an important complement to
explaining predicted labels for improving model trustwor-
thiness (Antorán et al. 2020; Perez et al. 2022).

There is limited work on studying the source of predictive
uncertainty in NLP. For example, previous works on explain-
ing uncertainty estimates mainly focus on tabular and im-
age data (Antorán et al. 2020; Ley, Bhatt, and Weller 2021;
Perez et al. 2022). Feng et al. (2018) observed that predic-
tion confidence increases with input reduction, while focus-
ing on model pathologies as reduced inputs lack predictive
information. Differently, we focus on identifying uncertain
words in inputs for explaining model predictive uncertainty.
To the best of our knowledge, this is the first work on ex-
plaining predictive uncertainty of pre-trained language mod-
els in NLP.

3 Explaining Predictive Uncertainty
In this work, we consider models that are calibrated, such
that their prediction confidence is aligned with their predic-
tion probability. Let f(·) denote a model. Given an input
x = [x1, . . . , xN ] consisting of N words, the model predic-
tion probabilities on x over classes are [f1(x), . . . , fC(x)],
where fc(x) = P (y = c | x) and C is the total number
of classes. As model f is calibrated, the probability on the
predicted class ŷ, i.e. fŷ(x), represents the model predic-
tion confidence on this label. As prediction confidence and
predictive uncertainty are negative correlated (higher con-
fidence implies lower uncertainty), we explain model pre-
dictive uncertainty by answering the question: What drags
model prediction confidence down? We answer the question
based on a simple observation on model prediction explana-
tions (Ribeiro, Singh, and Guestrin 2016; Li, Monroe, and
Jurafsky 2016; Lundberg and Lee 2017).

When a feature is identified with negative contribution,

removing it can improve model prediction confidence, as
shown in Fig. 1. Similar to the definition of prediction ex-
planation, we consider this feature explains predictive un-
certainty. Furthermore, given a ranking of input word contri-
butions produced by an explanation method, we name top-
ranked words as important words, explaining model pre-
dicted labels; and bottom words (with negative contribu-
tions) as uncertain words, explaining model predictive un-
certainty. In other words, a comprehensive prediction expla-
nation should consist of label explanation with important
words and uncertainty explanation with uncertain words. As
mentioned before, the goal of this study is to demonstrate
the benefits of comprehensive explanations and the neces-
sity of including uncertainty explanations. In this work, we
focus on extracting uncertain words from existing explana-
tion methods, with the expectation of stimulating further re-
search on explaining predictive uncertainty in NLP.

3.1 Explanation Methods
With the previous discussion, we adopt two perturbation-
based explanation methods, Leave-one-out (Li, Monroe,
and Jurafsky 2016) and Sampling Shapley (Strumbelj and
Kononenko 2010), for uncertainty explanations. Other ex-
planation methods can be easily adapted to explaining pre-
dictive uncertainty.

Leave-one-out (LOO). This method evaluates the effect
of each word on model prediction by leaving it out and ob-
serving the output probability change on the predicted class.
We define a contribution score for each word as

Si = fŷ(x)− fŷ(x\i), (1)
where x\i denotes the input with the word xi removed. The
contribution score Si quantifies how much the model predic-
tion confidence decreases when xi is left out.

Sampling Shapley (SS). This method computes feature
contributions in a more sophisticated way by considering
coalitions between words. Specifically, for a word xi, its
contribution score is computed as

Si =
1

M

M∑
m=1

fŷ(x
(m)
\i ∪ {xi})− fŷ(x

(m)
\i ), (2)

where M is the number of samples, and x
(m)
\i ⊆ x\i con-

tains a subset of words in x\i. The contribution score quan-
tifies the overall contribution of the word xi to the predicted
label over M ensembles. In experiments, we set M = 200.

For each prediction, both methods produce an explana-
tion with input word contributions, from which we extract
important and uncertain words as label and uncertainty ex-
planations respectively.

4 Setup
Models and datasets. We evaluate two pre-trained lan-
guage models, BERT (Devlin et al. 2019) and RoBERTa
(Liu et al. 2019), on three tasks, including sentiment anal-
ysis, toxic comments detection and political bias classifica-
tion. We utilize the IMDB (Maas et al. 2011) dataset for sen-
timent analysis, Wikipedia Toxicity Corpus (Toxics) (Wul-
czyn, Thain, and Dixon 2017) for toxic comments detection,



(a) BERT, IMDB (b) RoBERTa, IMDB

(c) BERT, Toxics (d) RoBERTa, Toxics

(e) BERT, Politics (f) RoBERTa, Politics

Figure 2: Average confidence (%) changes with uncertain
words removed. X-axis shows different bins of original con-
fidence. Ori: original confidence; LOO: Leave-one-out; SS:
Sampling Shapley.

and Senator Tweets (Politics) 1 for political bias classifica-
tion. More details about the models and datasets are in Ap-
pendix A.1.

Posterior calibration. We follow Desai and Durrett
(2020) and calibrate the models on each dataset via tempera-
ture scaling (Guo et al. 2017), so that their output probabili-
ties on predicted labels well represent prediction confidence.
More details of model calibration are in Appendix A.2.

5 Experiments
In our experiments, we focus on the three research questions:
(1) How effectively existing model explanation methods can
identify uncertain words? (2) What insights we can obtain
from uncertainty explanations in addition to label explana-
tions? (3) Whether users appreciate uncertainty explanations
in understanding model prediction behavior?

5.1 Quantitative Evaluation
For each dataset, we randomly select 1000 test examples and
generate explanations for model predictions on them (see
visualizations in Table 8). The following two results answer
the research question (1) and (2) respectively.

1https://huggingface.co/datasets/m-newhauser/senator-tweets

Figure 3: LMI distributions based on important words (a)
and uncertain words (b). The x-axis represents word fre-
quency in the vocabulary built on the IMDB dataset. We use
blue and red colors to distinguish features associated with
the POSITIVE and NEGATIVE labels respectively. Top 5 to-
kens in each distribution are pointed out.

Existing model explanation methods effectively identify
uncertain words that limit model prediction confidence.
We extract top k uncertain words identified by model expla-
nations and remove them from inputs and then compute the
average prediction confidence change in each bin of origi-
nal confidence. We empirically set k = 10 for IMDB and
k = 5 for Toxics and Politics based on their average sen-
tence lengths in Table 2. Figure 2 shows that both LOO and
SS capture uncertain words that limit prediction confidence.
Overall, SS performs better than LOO in identifying uncer-
tain words.

Important words and negations can result in uncertain
predictions. We analyze feature statistics of model expla-
nations via local mutual information (LMI) (Schuster et al.
2019; Du et al. 2021). LMI quantifies the association be-
tween a feature (an important/uncertain word) and a predic-
tion label in model explanations (Chen et al. 2022). The de-
tails of computing LMI are in Appendix A.3. We analyze
explanations generated by SS for RoBERTa on the IMDB
dataset. Figure 3 shows LMI distributions based on impor-
tant and uncertain words in explanations respectively. Some
important words for model predictions on a specific label
(e.g., great for POSITIVE, bad for NEGATIVE in (a)) be-
come uncertain words for the other label in (b). This in-
dicates models may get confused by important words cor-
responding to different labels in inputs. Besides, negation
words (e.g., not, no) pointed out in (b) are not shown in
(a), which means they may not be used by models for mak-
ing predictions but can highly cause model predictive uncer-
tainty. We observe similar results on other datasets in Table
7.

5.2 Human Evaluation
To answer the research question (3), we conduct human eval-
uation on both important and uncertain words in model ex-
planations through the Amazon Mechanical Turk (AMT).
The details of human evaluation are in Appendix A.4. The
following two observations illustrate the effectiveness and
indispensability of uncertainty explanations.



Model Dataset LOO SS

Label Unc Label Unc

BERT
IMDB 63.33 86.67 67.50 87.50
Toxics 60.00 86.67 86.67 90.00
Politics 66.67 83.33 82.50 75.00

RoBERTa
IMDB 66.67 83.33 80.00 86.67
Toxics 80.00 83.33 80.00 86.67
Politics 63.33 60.00 75.00 65.00

Table 1: Human prediction performance (%) on label expla-
nations (Label) and uncertainty explanations (Unc).

Humans perform better on understanding uncertainty
explanations than label explanations. First, we provide
inputs with important words highlighted and ask evaluators
to guess model prediction labels. Then we show model pre-
dictions with confidence and ask evaluators whether remov-
ing uncertain words can improve prediction confidence or
not. Table 1 shows the results of human performance on
predicting model prediction labels and confidence change.
Overall, humans have better performance on understand-
ing model predictive uncertainty based on uncertain words.
This indicates the effectiveness of uncertainty explanations
in helping users understand model predictions. Besides, SS
produces more understandable explanations to humans than
LOO. This is also reflected by the evaluation results where
evaluators score (from 1-5) the quality of explanations with
the average values 3.7 and 4.0 for LOO and SS respectively.

Humans prefer to see uncertainty explanations in ad-
dition to label explanations. We ask evaluators to vote
whether they want to include uncertainty explanations in
addition to label explanations for understanding model de-
cision making. Most (71%) evaluators prefer to see uncer-
tainty explanations. Besides, evaluators mark 72.6% of un-
certainty explanations identify the words that largely limit
model prediction confidence. This implies that uncertainty
explanations are indispensable to explaining model predic-
tion behavior.

6 Conclusion
In this paper, we propose to explain model prediction un-
certainty by extracting uncertain words from existing model
explanations. We adopt two explanation methods to explain
BERT and RoBERTa on three tasks. Experiments show the
effectiveness of uncertainty explanations in explaining mod-
els and helping humans understand model predictions.

Limitations
One limitation is that we adopted two perturbation-based
explanation methods, Leave-one-out and Sampling Shap-
ley, identifying word-level features. Utilizing high-level ex-
planation methods (e.g., hierarchical explanations (Chen,
Zheng, and Ji 2020)) may capture more semantic informa-
tion that explains model predictive uncertainty. Another lim-
itation is that we identified uncertain words by removing
them and observing whether model prediction confidence

increases. An alternative way is replacing those words with
their synonyms, hence maintaining the original semantic
meaning. But this may lead to adversarial examples, which
we leave to future work.

Ethics Statement
Regarding ethical concerns, this work utilized a sensitive
dataset (Wikipedia Toxicity Corpus (Wulczyn, Thain, and
Dixon 2017)) which contains toxic comments. Before con-
ducting human evaluation on this sensitive dataset, we had
reported potential participant risks to Institutional Review
Board (IRB) and gotten approval of continuing this research.
We will provide the link to IRB approval with the publica-
tion of this paper. The other two datasets, IMDB and Senator
Tweets, do not have higher risks than those encountered in
daily life and daily online activities. For all human evalua-
tion experiments, we did not collect any personal informa-
tion (e.g. demographic and identity characteristics) of par-
ticipants.
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A Supplement of Experiments
A.1 Models and Datasets
We adopt the pretrained BERT-base and RoBERTa-base
models from Hugging Face2. For sentiment analysis, we uti-
lize the IMDB (Maas et al. 2011) dataset which contains
positive and negative movie reviews. For toxic comments
detection, we test on the Wikipedia Toxicity Corpus (Tox-
ics) (Wulczyn, Thain, and Dixon 2017). The task is to de-
tect whether a comment is toxic or nontoxic. For political
bias classification, we adopt the Senator Tweets dataset (Pol-
itics) 3, which collects all tweets made by US senators dur-
ing 2021-2022. The task is to recognize the political bias
of each tweet as Democratic or Republican. All datasets are
in English. Table 2 shows the statistics of the datasets. We
fine-tune the models on the three datasets and report their
prediction performance in Table 3.

We implement the models in PyTorch 3.7. The num-
bers of parameters in the BERT and RoBERTa models are
109484547 and 124647170 respectively. We manually set
hyperparameters as: learning rate is 1e − 5, maximum se-
quence length is 256, maximum gradient norm is 1, and
batch size is 8. All experiments were performed on a sin-
gle NVidia GTX 1080 GPU. The corresponding validation
accuracy for each reported test accuracy is in Table 4. The
time for training each model on each dataset is in Table 5.
All training and evaluation are based on one run.

A.2 Posterior Calibration
A common way of measuring predictive uncertainty is by
calibrating model outputs with the true correctness likeli-
hood, so that the predictive probabilities well represent the
confidence of model predictions being correct (Guo et al.
2017; Kong et al. 2020; Desai and Durrett 2020; Zhao et al.
2021). Lower prediction confidence indicates higher uncer-
tainty (Xu, Desai, and Durrett 2020; Jiang et al. 2021). We
follow the post-calibration methods and adopt the tempera-
ture scaling (Guo et al. 2017; Zhao et al. 2021) to calibrate
the pre-trained language models (BERT and RoBERTa) in
our experiments.

Specifically, we use the development set to learn a tem-
perature T which corrects model output probabilities by di-
viding non-normalized logits before the softmax function.
Then the learned T is applied to modify model outputs on
the test set. In experiments, we linearly search for an optimal
temperature T between [0, 10] with a granularity of 0.01,
which empirically performs well. We evaluate model cali-
bration with Expected Calibration Error (ECE) (Guo et al.
2017). The ECE measures the difference between prediction
confidence and accuracy, i.e.

ECE =

K∑
k=1

|Bk|
n

|acc(Bk)− conf(Bk)|, (3)

where the total n predictions are partitioned into K equally-
spaced bins, Bk represents the predictions fall into the kth

2https://github.com/huggingface/transformers
3https://huggingface.co/datasets/m-newhauser/senator-tweets

bin, acc(·) and conf(·) compute the average accuracy and
confidence in each bin respectively. For a perfect calibration,
acc(Bk) = conf(Bk), k ∈ {1, . . . ,K}. In this work, we
set K = 10. We report the learned temperature scalars and
ECEs before and after calibration in Table 6. Temperature
scaling performs effectively in decreasing model calibration
errors. This enables us to further explain prediction uncer-
tainty based on calibrated confidence. We apply temperature
scaling to correct model outputs in experiments.

A.3 Local Mutual Information
To understand which features contribute to model predic-
tions and which features cause prediction uncertainty, we
follow (Schuster et al. 2019; Du et al. 2021; Chen et al.
2022) and analyze feature statistics of model explanations
via local mutual information (LMI). LMI quantifies the as-
sociation between a feature and a prediction label in model
explanations. We compute LMI based on top 5 important
and uncertain words in prediction and uncertainty explana-
tions respectively. Specifically, for each group of features,
we can get a set of unique features, E = {e}. The LMI be-
tween a feature e and a prediction label y is

LMI(e, y) = p(e, y) · log
(
p(y | e)
p(y)

)
, (4)

where p(y | e) = count(e,y)
count(e) , p(y) = count(y)

|E| , p(e, y) =
count(e,y)

|E| , and |E| is the number of occurrences of all fea-
tures in E. Then we can get a distribution of LMI over all
tokens in the vocabulary ({w}) built on the dataset, i.e.

PLMI(w, y) =

{
LMI(w, y) if token w ∈ E

0 else
(5)

We normalize the LMI distribution by dividing each value
with the sum of all values. Table 7 records top 10 tokens in
different LMI distributions of model explanations.

A.4 Human Evaluation
We conduct human evaluation on both important and un-
certain words in model explanations through the Amazon
Mechanical Turk (AMT). For each dataset, we randomly se-
lect 30 test examples to generate explanations for each pre-
trained language model. Each explanation (with 2-3 impor-
tant and uncertain words extracted respectively) is assessed
by 5 workers. We pay the workers $0.3 for assessing each
explanation. We have collected 900 annotations in total.

For each explanation, we ask the worker to answer the
following 5 questions:
1. Prediction on label explanations (multiple choices):

Given the model input text, can you guess the model pre-
diction label based on the highlighted tokens?

2. Rating on label explanations (1-5 Liker scale): Given
the model input text and model prediction label, how
much do you think the highlighted tokens make sense
to you?

3. Prediction on uncertainty explanations (multiple
choices): Given the model input text and model predic-
tion probability, do you think removing the highlighted



Datasets L #train #dev #test Label distribution

IMDB 231 20K 5K 25K Positive: train(10036), dev(2414), test(12535)
Negative: train(9956), dev(2583), test(12451)

Toxics 68 96K 32K 32K Toxic: train(9245), dev(3069), test(3048)
Nontoxic: train(86447), dev(29059), test(28818)

Politics 34 70K 7.8K 19K Democratic: train(36222), dev(3982), test(10240)
Republican: train(33796), dev(3789), test(9189)

Table 2: Summary statistics of the datasets, where L is average sentence length, and # counts the number of examples in the
train/dev/test sets. For label distribution, the number of examples with a specific label in train/dev/test is noted in bracket.

Models IMDB Toxics Politics

BERT 91.29 96.96 91.20
RoBERTa 93.36 96.75 91.32

Table 3: Prediction accuracy (%) of different models on the
test sets.

Models IMDB Toxics Politics

BERT 91.76 96.83 91.44
RoBERTa 93.30 96.69 91.53

Table 4: Validation accuracy (%) for each reported test ac-
curacy.

tokens can further increase the model prediction proba-
bility or not?

4. Rating on uncertainty explanations (1-3 Liker scale):
How much do you think the current model prediction
probability could be changed by removing the high-
lighted tokens?

5. Comparison on label explanations and uncertainty
explanations (multiple choices): Which type of model
explanations can help you better understand the model
prediction?

Figure 4 and Figure 5 show the interfaces of human evalua-
tion on Q1 and Q3 respectively.

A.5 Visualizations
Table 8 shows visualizations of different model explanations
with both important and uncertain words highlighted.

Models IMDB Toxics Politics

BERT 856.43 3254.33 1483.65
RoBERTa 912.47 3467.39 1646.12

Table 5: The average runtime (s/epoch) of each model on
each in-domain dataset.

Models IMDB Toxics Politics

BERT:
T 4.59 1.95 4.2

pre-ECE 8.45 2.36 8.56
post-ECE 2.85 0.89 3.83

RoBERTa:
T 2.76 2.16 3.98

pre-ECE 6.36 2.90 8.45
post-ECE 2.50 1.13 4.29

Table 6: Posterior calibration results. T is the learned tem-
perature. pre-ECE and post-ECE represent the ECEs on test
sets before and after calibration respectively.



Figure 4: Interface of human evaluation on important words highlighted in blue color.

Figure 5: Interface of human evaluation on uncertain words highlighted in green color.



Model Dataset Label Leave-one-out Sampling Shapley

Important Uncertain Important Uncertain

BERT

IMDB Pos this great best film a
good excellent and

it wonderful

i movie this was to
just the would but

not

great best and
excellent love

wonderful good this
very enjoyed

movie just would
bad but nothing not

could off plot

Neg this worst movie
bad not but no

terrible just nothing

but is and not the it
a this ’t great

bad worst this
movie just boring
terrible awful not

nothing

and great very it is
good in not his seen

Toxics Tox you fuck hell
fucking bullshit
idiot dick suck

stupid gay

the are so fuck of
good have wow love

for

you fuck hell gay
fucking bullshit
idiot dick suck

stupid

the can in please if
so certainly because

know help

NTox please to i if not the
of wikipedia can is

thank

you your i the and a
to please me is

please the can to if
for in of thank use

you a i your me the
my it van and

Politics Dec and to climate must
this child our so the

in

the and to of we in
american is
americans i

this must climate
that health now

today more every to

the a is for american
back ensure work

and not

Rep democrats the is
border bid great and
communist inflation

fox

to and the i this our
my with in for

the a is bid and
border for

communist his fox

that this to more
must you today
every now your

RoBERTa

IMDB Pos this best and great
not but good I film

is

the not I is a for this
and no was

great and love
excellent wonderful
best very amazing

brilliant perfect

any plot ’t bad no
nothing movie

much never this

Neg this not bad worst
boring just the even

and no

bad ’t not and plot
butwas a to me

bad worst plot
boring terrible

nothing stupid much
no waste

and great first not
more special very
love life moments

Toxics Tox you fuck stupid
HELL suck Fuck
YOU You fucking

shit

to but if or Go an
reported thanks
ipedia should

you fuck You stupid
HELL suck Fuck
YOU fucking shit

to for reported OF
but the about in help

need

NTox to the Please article
of please for Thank

and in

you your is I a Your
vandal not my me

to the for article use
in please Please of

If

you your a me is my
You vandal I are

Politics Dec and the to this in our
a must for will

the americ an in to
for is act this a

this and climate care
child today that

workers how
families

americ is the will of
back family they not

would

Rep bid en is democr the
border americ us

great to

to the and our my i
of in this a

americ border
democr bid is

spending great not
inflation would

and this that to our
it more my you

families

Table 7: Top 10 tokens in different LMI distributions of model explanations. Important: statistics of top salient words in expla-
nations; Uncertain: statistics of bottom salient words in explanations; Pos: postive; Neg: negative; Tox: toxic; NTox: nontoxic;
Dec: democratic; Rep: republican. Warning: this table contains toxic tokens.



Model/Dataset Method Prediction Explanation

BERT/IMDB LOO Negative (0.69 → 0.80) i found it to be a complete disappointment . if i had
of known this movie was going to be as stupid as it

was , i would have stayed home and done
something more entertaining ... the plot was a great

idea , just could have been done in a much better
way .

RoBERTa/IMDB SS Positive (0.51 → 0.86) Not the best of the Lone Star series, but it moves
along quickly with good performances. Introduced
as ”Singin’ Sandy” in the main title, John Wayne

as a ’singing cowboy’ isn’t successful...

BERT/Toxics LOO Nontoxic (0.83 → 0.97) oh , and i have a question . why was the article on
brad christian , a famous magician , deleted

because of vandalism instead of simply restored ? i
believe that many users on this site are biased

towards magicians . i have come to the conclusion
that wiki is a useless site that does nothing to help
anyone . you are welcome to ban me longer , and i
understand completely if you do , but this site is
the worst piece of garbage i have ever found !

RoBERTa/Toxics SS Nontoxic (0.71 → 0.94) You are so full of shit. First of all, you aren’t an
admin, and for the sake of this site I hope you

never will be. I know I will personally work against
you if you ever decide to try for one. But I digress

as you are not an administrator, and especially
since you have no access to checkuser, you cannot
determine who is or is not a sockpuppet nor do you
have the authorization to place a tag on a user page

.

BERT/Politics SS Democratic (0.64 → 0.95) fantastic news . star plastics was founded in
ravenswood and is continuing to invest in west
virginia . this expansion will lead to economic

development and growth in jackson county , and
shows that wv is the perfect place for companies

large and small .

RoBERTa/Politics LOO Republican (0.85 → 0.94) happy national day , taiwan. your commitment to
democracy and market economics is an effective

model that can be relied upon to solve our
collective problem .

Table 8: Visualizations of prediction explanations for different models on different datasets, where top two important and
uncertain words are highlighted in blue and red colors respectively. The prediction confidence changes are shown in brackets
when the highlighted uncertain words are removed. LOO: Leave-one-out; SS: Sampling Shapley. Warning: some examples may
be offensive or upsetting.


