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Abstract

Neural language models for commonsense reasoning often
formulate the problem as a QA task and make predictions
based on learned representations of language after finetun-
ing. However, without providing any finetuning data and pre-
defined answer candidates, can neural language models still
answer commonsense reasoning questions only relying on ex-
ternal knowledge? In this work, we investigate a unique yet
challenging problem - open-domain commonsense reasoning
that aims to answer questions without providing any answer
candidates and finetuning examples. Our proposed method
leverages neural language models to iteratively retrieve rea-
soning chains on the external knowledge base, which does
not require task-specific supervision. The reasoning chains
can help to identify the most precise answer to the common-
sense question and its corresponding knowledge statements
to justify the answer choice. We conduct experiments on two
commonsense benchmark datasets. Compared to other ap-
proaches, our proposed method achieves better performance
both quantitatively and qualitatively.

Introduction
Large-scale pretrained language models (PLMs) learn to im-
plicitly encode basic knowledge about the world by training
on an extremely large collection of general text corpus and
refining on downstream datasets, which have recently taken
over as the primary paradigm in NLP. Although PLMs have
excelled in many downstream tasks, they still face two major
cruxes in reasoning-related tasks: 1) PLMs frequently en-
counter difficulties when the required knowledge is absent
from the training corpus or the test instances are not for-
mulated as question-answering format, and 2) PLMs base
their predictions on implicitly encoded knowledge that is in-
capable of handling structured reasoning and does not offer
explanations for the chosen response. As shown in Figure 1,
if we are presented with a question that its domain is different
from examples seen during the training. For medical-domain
questions like What are both Family Doctor and Surgeon
refer to?, we aim to generate an abstracted meaning for both
entities without providing any answer candidates. However,
without providing any finetuning instances, the state-of-the-
art PLM T5-3b (Kale and Rastogi 2020) would generate
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(a) Domain-specific
Question

Question: What are both 
Family Doctor and 
Surgeon referred to?

(b) Commonsense
Multiple-choice Question

Question: What do people
aim to do at work?

Commonsense Multiple-choice: people aim to [X] at work?
A: learning from others [Pr: 0.675]
B: complete job [Pr: 0.693]
C: kill animals [Pr: 0.341]
D: wear hats [Pr: 0.546]
E: talk to each other [Pr: 0.664]
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Figure 1: Two cruxes of using PLMs in commonsense rea-
soning: 1) Without finetuning, PLMs may not handle out-of-
distribution or domain-specific reasoning questions. 2) PLMs
need pre-existing answer candidates and they generally can-
not justify their prediction results.

an irreverent answer: quizlet. In addition, for commonsense
questions: People aim to [MASK] at work, the paradigm of
prompt learning with PLMs often formulate the problem to
multiple-choice QA and calculate the likelihood of the whole
sentence by filling in the blank with each answer candidate.
However, both answers learning from others and complete
job can fit in the semantics of the question. PLMs cannot
provide justification for why a certain answer can be chosen.
Both cases reveal that the prediction of commonsense rea-
soning requires robust and structured reasoning to integrate
the explicit information offered by the question context and
external knowledge.

In this work, we focus on the Open-domain Commonsense
Reasoning task, which requires machines to make human-
like presumptions about the type and essence of ordinary
situations without presenting any answer candidates and fine-
tuning examples. Addressing open-domain commonsense
reasoning problems would be more ordinary than formulat-
ing the commonsense reasoning problem into QA task since
we might not have any pre-existing answer candidates for the
question or the training resources and data necessary to do
fine-tuning. The intricacy of this task requires us to incor-



porate explicit information provided by external knowledge
in the reasoning step. However, open-domain commonsense
reasoning is still under-explored because there are two ob-
stacles that existing external knowledge-enhanced common-
sense reasoning methods cannot handle. 1) the difficulty of
retrieving relevant information for structured reasoning. Re-
trieving relevant from external knowledge under the open-
domain setting can be quite challenging since the overall
searching is neither learning-based nor guided by certain tar-
gets. Existing methods (Ma et al. 2021; Bian et al. 2021)
have been leveraging learning-based ranking algorithms to
retrieve knowledge, but it requires substantial pretraining or
finetuning on the testing domain, which is not applicable in
our setting. The other line of works (Lin et al. 2019; Ya-
sunaga et al. 2021) builds local knowledge graphs between
the question and provided answer candidates, but their al-
gorithm cannot be executed if there are no pre-existing can-
didates. 2) the difficulty of enhancing explainability in the
retrieved knowledge. The current PLMs more perform like
a black-box model that lacks adequate explanations of the
answer selection. Other than knowing the correct answer, it
would be more essential to see what rationale can be taken
from external knowledge to support PLMs making human-
like presumptions. Existing methods either directly sample
sentences as knowledge statements based on the question
(Liu et al. 2021) or require learning steps to generate ex-
planations (Paranjape et al. 2021). None of both approaches
can generate explanations of the answer choice under the
zero-shot and open-domain settings as required in our case.

In this paper, we present the external Knowledge-
Enhanced Prompting method (KEP) to solve the open-
domain commonsense reasoning task. We utilize the im-
plicitly stored knowledge in PLMs to iteratively recover rea-
soning chains from the organized external knowledge base,
as opposed to alternative methods that need direct supervi-
sion of the reasoning processes. Additionally, each retrieved
reasoning path acts as the explicit justification for the answer
selection. Following is a summary of the work’s main contri-
butions. 1) We formulate the novel open-domain common-
sense reasoning problem and identify its unique challenges.
2) We iteratively collect reasoning chains from the exter-
nal structured knowledge base using the implicit information
stored in PLMs as guidance. 3) The proposed approach is
capable of identifying the most appropriate answer and au-
tomatically producing the corresponding explanations.

Related works
External Knowledge for Commonsense Reasoning. Many
studies have demonstrated that PLMs empirically cannot per-
form well on reasoning-related tasks only relying on their im-
plicitly stored knowledge during training (Jiang et al. 2020).
Combining PLMs and external knowledge for reasoning has
recently gained lots of attention, methods have been invented
to inject commonsense knowledge into language models, ei-
ther by pretraining on knowledge bases (Ma et al. 2021),
finetuning the model on the test domain (Bian et al. 2021),
or leveraging structured knowledge base (e.g., ConceptNet)
(Yasunaga et al. 2021) so that it can reason with additional
retrieved knowledge. However, none of these works can be

𝑞=“What do people 
aim to do at work?”

𝐤 = {“People works at office”,
“People learns to work at office”,
…,
“Works is related to jobs”,
“People learns to work at office to finish_jobs”}

#𝑎=“finish_jobs”

Figure 2: Example of the open-domain commonsense rea-
soning: the model takes the question as input and returns
supporting knowledge statements with the predicted answer.

trivially adapted to solve the open-domain commonsense
reasoning problem since they either require substantial pre-
training/finetuning or pre-existing answer candidates for the
question. Lastly, our work is conceptually related to open-
domain Question-answering but our reasoning step is con-
ducted on a knowledge graph, which is a more robust and
organized external knowledge source.
Explanations for Commonsense Reasoning. Other than
predicting the correct answer, it is also important to explore
what are explicit reasoning steps behind the answer selection.
Other than works that require direct supervision to predict
explanation (Paranjape et al. 2021), (Bosselut, Le Bras, and
Choi 2021) proposed to leverage knowledge graph to ac-
quire reasoning paths as the explanation in an unsupervised
way. However, this approach requires predefined answers to
guide the reasoning, which is not applicable in open-domain
commonsense reasoning. The other line of works (Shwartz
et al. 2020; Liu et al. 2021) have also been utilizing model-
generated text as the clarification of the commonsense ques-
tion and empirically demonstrated the performance can be
boosted by augmenting the query with knowledge statements.
However, purely relying on the language model still lacks the
model transparency, and the generated knowledge statement
cannot be empirically served as the answer explanation.

Proposed Method
In this section, we first introduce the problem formulation,
and then discuss the detailed framework of the proposed
method, which can be divided into three components: 1) en-
tity extraction and linking, 2) local knowledge graph expan-
sion, and 3) explanation generation and answer prediction.

Problem Formulation
We aim to solve open-domain commonsense reasoning ques-
tions using knowledge from a PLM and a structured knowl-
edge graph 𝐺. The knowledge graph 𝐺 = (𝑉, 𝐸) (e.g., Con-
ceptNet) is a multi-relational graph, where 𝑉 is the set of
entity nodes, 𝐸 ⊆ 𝑉 × 𝑅 × 𝑉 is the set of edges that con-
nect nodes in 𝑉 , where 𝑅 represents a set of relation types.
Specifically, for open-domain commonsense reasoning ques-
tions 𝑞 (i.e., given a question 𝑞 without providing answer
candidates), the target of this work is to determine 1) a local
knowledge graph 𝐺𝑞 ∈ 𝐺 contains relevant information of
𝑞; 2) a set of knowledge statements k = {𝑘1, 𝑘2, ..., 𝑘𝑚}; and
3) an entity 𝑎̂ extracted from k that is precise to answer the
question 𝑞. For example in Figure 2, to answer the open-
domain commonsense question ”what do people aim to do
at work?”, we aim at first extracting all plausible knowledge
statements from the external knowledge base that can provide
us logical information to answer the question. Among all the



𝑞=“What do people aim 
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1. Concept Extraction and Mapping
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3. Knowledge Integration and Prediction
𝐜𝒌 = {“work on new and challenge problems”,
“finish jobs”,
“learn from others”,
“invest money or energy”, …}

𝒌 = {“People is capable of work on new and 
challenge problems”,

“work is related to office, office is at the 
location of finish jobs”,

“work requires learn, learn is related to 
learn from others”,

“aim is related to succeed, succeed is 
motivated by invest money or energy”}

Figure 3: The framework of the proposed method, which consists of 1) concept extraction and entity linking; 2) local knowledge
graph expansion with iterative reasoning steps; and 3) knowledge integration and final answer prediction.

statements, we select the most precise one (i.e., people learn
to work at the office to finish jobs) and extract the answer
𝑎̂ = finish jobs such that the following joint likelihood can
be maximized.

𝑃(𝑎̂, k|𝑞, 𝐺𝑞) = 𝑃(k|𝑞, 𝐺𝑞) · 𝑃(𝑎̂ |k)

However, the expressiveness and generalization capability
of existing frameworks are still limited to solving the open-
domain commonsense reasoning problem due to two critical
challenges. Firstly, retrieving knowledge statements that can
explicitly reveal the reasoning steps is challenging, and most
existing works (Shwartz et al. 2020; Liu et al. 2021) solely uti-
lize PLMs 𝑝𝜃 (𝑘 |𝑞) to sample a set of question-related state-
ments k = {𝑘 ∼ 𝑝𝜃 (𝑘 |𝑞)}. This approach makes the sam-
pling process time-consuming and lacks knowledge aware-
ness, let alone the interpretability of the generated knowl-
edge. Secondly, another line of work (Yasunaga et al. 2021;
Lin et al. 2019) has been trying to build a local knowledge
graph 𝐺 between 𝑞 and all the provided answer candidates
to enhance the interpretability of the answer selection. How-
ever, as we are dealing with open-domain or domain-specific
questions without any given answer candidates, building the
local graph also becomes infeasible.

Next, we discuss how to initiate the local knowledge graph
and iteratively reason over it to find all plausible knowledge
statements and the most convincing answer. We demonstrate
the overall framework in Figure 3.

Local Graph Construction and Expansion
Knowledge Graph Entity Linking. ConceptNet enables a
variety of useful context-oriented reasoning tasks over real-
world texts, which provides us with the most suitable struc-
tured knowledge in the open-domain commonsense reason-
ing task. To reason over a given commonsense context using
knowledge from both the PLM and the knowledge graph
𝐺, the first step of the framework is to extract the set of
critical entities c𝑞 = {𝑐 (1)𝑞 , ..., 𝑐

(𝑖)
𝑞 , ...} from the question 𝑞

that have the surjective mapping to nodes 𝑉𝑞 ∈ 𝑉 in the
knowledge graph. Since 𝑞 is often presented in the form of
non-canonicalized text and contains fixed phrases, we follow
the prior work (Becker, Korfhage, and Frank 2021) to map
informative entities c𝑞 from 𝑞 to conjunct concept entities
in ConceptNet by leveraging the latent representation of the
query context and relational information stored in 𝐺.

(people, relatedto, work)

(work, atlocation, office)

(office, relatedto, finish jobs)

people
work

office finish_jobs

𝑞=“What do people aim to do at work?”

(𝑣! , 𝑟!" , 𝑣")

Relation Groups Merged Relations Relation Text

antonym/distinctfrom antonym is the antonym of

atlocation/locatednear atlocation is at location of

relatedto/similarto/synonym relatedto is related to

Example: 𝑊=“What do people aim to do at work? 
<office>, because <work is related to office>.”

Figure 4: Knowledge statement transformation and cloze-
based prompt construction.
Reasoning Over Local Knowledge Graph. To imitate the
human reasoning process, we aim to retrieve reasoning paths
within 𝐿 hops from 𝐺 to form the local knowledge subgraph
𝐺𝑞 that has the highest coverage to the question concepts
c𝑞 . Ideally, each path in 𝐺𝑞 can be regarded as a reasoning
chain that helps to locate the most precise answer and its
explanation to the question 𝑞. However, expanding 𝐿-hop
subgraph 𝐺𝑞 from c𝑞 is computationally prohibited. Unlike
other works (Yasunaga et al. 2021; Lin et al. 2019) that
build 𝐺𝑞 between the question 𝑞 and all answer candidates,
the open-domain commonsense reasoning problem does not
provide any directions (i.e., answer candidates). The typical
node size of a 3-hop local knowledge graph with |c𝑞 | = 3
could easily reach 1, 000 on ConceptNet, and many nodes
are irrelevant under the current question context.
Reasoning Path Pruning. In order to make the process of
reasoning path expansion scalable, we incorporate the im-
plicit knowledge in PLMs to prune irreverent paths. Specif-
ically, we pair the question 𝑞 with the text of node 𝑣 along
with the reasoning-path-transformed knowledge statement
to form a cloze-based prompt 𝑊 = [𝑞; 𝑣 𝑗 ; (𝑣𝑖 , 𝑟𝑖 𝑗 , 𝑣 𝑗 )] in
order to turn the local graph expansion problem into an ex-
plicit reasoning procedure by directly answering the ques-
tion with explanation. For example in Figure 4, the prompt
is formatted as What do people aim to do at work? <node>,
because <reasoning path>. Note that we leverage prede-
fined template to transform the triplet (𝑣𝑖 , 𝑟𝑖 𝑗 , 𝑣 𝑗 ) into natu-
ral language. Specifically, ConceptNet contains lots of rela-
tions (|𝑅 | = 34) and some of them share similar meanings
(e.g., both antonym and distinct from have the same mean-



ing antonym). Moreover, we predefine templates to trans-
form the reasoning path triplets into natural language. For
example, (work, antonym, unemployment) can be translated
to work is the antonym of unemployment. We also illustrate
a few examples of the merged types and templates in Fig-
ure 4. To evaluate whether we keep the reasoning path, we
propose to compute the commonsense score of the reason-
ing path, where we use the PLM to score the relevance
of each reasoning path given the context of the question.
Formally, suppose the logical sentence 𝑊 consists of 𝑁

words 𝑊 = {𝜔1, ..., 𝜔𝑛−1, 𝜔𝑛, 𝜔𝑛+1, ..., 𝜔𝑁 }, the common-
sense score 𝜙𝑙 (𝑊) of the logical sentence 𝑊 composed at
𝑙-th hop expansion is defined as:

𝜙𝑙 (𝑊) B
𝑁∑︁
𝑛=1

log(𝑝𝜃 (𝜔𝑛 |𝑊\𝑛))/𝑁, (1)

where the 𝑊\𝑛 indicates the masked knowledge statement
by replacing the token 𝜔𝑛 to the mask, and the denominator
𝑁 reduces the influence of the sentence length on the score
prediction. Intuitively, log(𝑝𝜃 (𝜔𝑛 |𝑊\𝑛)) can be interpreted
as how probable a word 𝜔𝑛 given the context. For example,
by filling blue and red into the masked logical statement𝑊\𝑛
= The sky is [MASK], blue should have a higher score.

As we iteratively expand 𝐺𝑞 , each 𝜙𝑙 (𝑊) scores a unique
reasoning path at a particular 𝑙 ∈ [1, 𝐿] depth in the graph.
As marked in Figure 3, a higher score 𝜙𝑙 (𝑊) indicates the
node 𝑣 𝑗 should be kept for the next (𝑙 + 1) hop expansion.

Knowledge Integration and Prediction
After we obtained the subgraph 𝐺𝑞 consisting of all reason-
ing paths within 𝐿-hop with a high commonsense score, all
the reasoning paths can be regarded as the supporting knowl-
edge explanation. The final step is to make the answer pre-
diction. We utilize beam search to only keep high-confidence
reasoning paths and transform them into natural language by
the designed template in the set of knowledge statements k
during the retrieval phase. Starting from each entity in c𝑞 ,
each reasoning path within 𝐿-hop neighbor can then be seen
as scoring a path to a particular answer node.

log 𝑝𝜃 (𝑎 | [𝑞; 𝑘]) ∝ 𝜙𝐿 =

𝐿∑︁
𝑙=1

𝜙𝑙; (𝑎̂, 𝑘̂) = arg max
𝑎∈a,𝑘∈k

𝜙𝐿 ,

where a is the set of all explored answer candidates, and
the 𝜙𝐿 denotes the final score for each answer and can be
interpreted as approximating the likelihood of answer 𝑎 given
a singular reasoning path {𝑐 → 𝑣1 → 𝑣2 → · · · → 𝑎}. We
can thus pick the answer 𝑎̂ and its explanation 𝑘̂ with the
highest score as the final answer and supporting knowledge.

Experiment
We empirically verify the performance of the proposed
method against other methods on commonsense reasoning
benchmark datasets under the open-domain setting. In this
work, the inference language model 𝑝𝜃 can be any existing
masked language model either with the zero-shot setting or
finetuned on the external knowledge base, and we leverage

Method CSQA QASC
Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

GPT-3 0.552 − − − − − − 0.424 − − − − − −
DeBERTa-large 0.245 0.396 0.598 0.269 0.554 0.618
RoBERTa-large 0.275 0.477 0.682 0.294 0.523 0.578
KEP (Ours) 0.385 0.615 0.778 0.467 0.742 0.821

Table 1: Top-1, 3, and 5 prediction accuracy made by human
annotators for each model. Note that GPT-3 generates text
autoregressively instead of filling mask in the prompt, it can
only generate one answer so we only label its Top-1 accuracy.

the masked language model RoBERTa-large (Liu et al. 2019)
since it has larger representative power in commonsense abil-
ity with a less model size (Zhou et al. 2020).

Experiment Setting
Dataset. We evaluate our method on two commonsense rea-
soning benchmarks. 1) CommonsenseQA (CSQA) (Talmor
et al. 2019) is a multiple-choice QA dataset about common-
world scenarios. The dataset is constructed on ConceptNet.
2) QASC (Khot et al. 2020) is a multiple-choice QA dataset
about grade school science. We randomly sample 400 ques-
tions from the testing set of both datasets. We also discard the
multiple-choice answers in both datasets in order to simulate
the open-domain scenario.
Comparison Methods and Evaluation Metrics. Since we
are the first to investigate the open-domain commonsense
reasoning problem, we have no direct opponents to compare
the performance. In this work, we compare our model against
state-of-the-art language models: GPT-3 (Brown et al. 2020),
Deberta-large (He et al. 2021), and RoBERTa-large (Liu et al.
2019). Since GPT-3 is a generative model, we generate the
answer in an autoregressive way. RoBERTa and DeBERTa
are masked language models, we then transform the question
into a discrete prompt (a few examples are listed in Table
2) and generate the most likely answer. In terms of evalu-
ating the generated answers, since we do not have ground
truth to evaluate the prediction correctness, we instead gen-
erate answer candidates for each commonsense question and
rank them based on their commonsense score (Equation (1)).
A human annotator indicates whether there exists a precise
answer that fits the semantics in the top-𝑁 predicted answers.

Results
Quantitative Analysis. Table 1 summarizes the Top-𝑁 accu-
racy results. For each approach, the test results are obtained
by evaluating if there is a precise answer in the top-5 gen-
erated answers. As can be clearly seen from the table, our
proposed method excels both masked language models by
an evident margin. Without accessing external knowledge,
standard PLMs still lack knowledge awareness and gener-
ally cannot perform well on structured reasoning tasks. In
addition, GPT-3 is pretrained on an extremely large corpus
and contains 175 billion parameters, and our method KEP
(based on RoBERTa-large with only 335 million parameters)
demonstrates competitive performance in both datasets. We
empirically testify most commonsense knowledge can be de-
rived from the external knowledge base, and it is natural to
elicit related knowledge from it.



Dataset Commonsense Question Answer Prediction
GPT-3 DeBERTa RoBERTa KEP (Ours)

CSQA

What do people aim to do at work?
→ (People aim to [MASK] at work.) achieve success burst succeed

work on new and challenging problems
(Work is done by People,
People desires to work on new and challenging problems)

Where would you find magazines alongside many other printed works?
→ (You find magazines alongside many other printed works at [MASK].) magazine publishers board home

bookstore
(Magazine is a type of book,
book is at the location of bookstore.)

QASC

What is usually important for a doctor to do?
→ (A doctor is usually important to [MASK].) one way to treat an infection help beforehand

have checkup
(doctor is related to illness,
illness makes you want to have a checkup.)

what is saturated fat at room temperature?
→ (The saturated fat at room temperature is [MASK].) solid at room temperature unchanged negligible

solid object
(fat is related to butter,
butter is a type of solid object.)

Table 2: More examples to illustrate retrieving the reasoning paths on ConceptNet can enhance the language model’s reasoning
ability. where prompting with generated knowledge reduces the reasoning type and rectifies the prediction. We also present the
cloze-based prompt example for each question to let masked language models fill the mask.

Case Study. Next, we demonstrate a few examples from both
datasets to see how the retrieved reasoning path can help the
PLM to make the correct prediction without any few-shot
finetuning steps. As shown in Table 2, masked language
models RoBERTa and DeBERTa generally cannot predict
the answers that fit the semantic meaning in both questions.
In addition, the state-of-the-art PLM GPT-3 can generate
suitable answers, but the computational overhead of execut-
ing GPT-3 is huge, and the autoregressive way to generate
answers is also not grounded. As opposed to existing ap-
proaches, by reasoning over the external knowledge graph,
KEP can generate precise answers and provide a reason-
ing chain to support the answer choice without any learning
steps.

Conclusion and Future Works
We present an off-the-shelf platform KEP to predict answers
for open-domain commonsense reasoning. By leveraging the
implicit knowledge stored in PLMs and the external knowl-
edge base, the proposed model is able to retrieve relevant
reasoning paths of the question. With the zero-shot and open-
domain setting, the work poses a new direction to automated
commonsense reasoning. In future works, we plan to sub-
stitute the RoBERTa used in this work with other PLMs
that are finetuned on commonsense reasoning-related tasks
as the underlying model. Since the current framework does
not incorporate any learning strategy, the purely PLM-driven
reasoning path retrieval may not well handle more complex
reasoning problems (e.g., commonsense questions with nega-
tion). We further plan to leverage learning steps to enhance
the model’s reasoning capability. Given the uniqueness of
the open-domain commonsense reasoning task, we will also
perform a variety of experiments on other datasets.
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