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ABSTRACT
We study the problem of creating a highly expressive, interpretable,

and simultaneously fairmachine learningmodel.We propose neural-

informed decision trees (NIDTs), a fair model that combines the pre-

dictive power of neural networks with the inherent interpretability

of decision trees. NIDTs perform axis-aligned splits on the features

of the dataset to create an interpretable decision path, and at each

leaf, use a linear predictor that uses both the features as well as the

embeddings coming from a task-specific neural network to capture

non-linearities in the data. To generate NIDTs we propose a decom-

position training scheme. The proposed trainingmethod enables the

direct integration of fairness constraints by solving a constrained

convex optimization problem at each leaf, resulting in a certified

fair model. We evaluate NIDTs on 15 publicly available datasets,

where we show that NIDTs outperform multiple interpretable tree-

based models, as well as the neural network that informs them. We

also show the interpretable aspects of the method by extracting a

drug-dosage prescription policy using a real-world dataset. Finally,

we demonstrate the fairness of NIDTs on a real-world dataset by

directly incorporating fairness constraints into the model, resulting

in a certified fair model that eliminates gender bias in prediction.
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1 INTRODUCTION
In recent years, practitioners and academics have been increasingly

incorporating machine learning models to inform critical decision-

making processes in various fields such as healthcare [7], justice

[17], and education [9] among others. Although machine learning

has greatly transformed critical decision-making processes, the

deployment of machine learning models in real-world settings has

exposed unexpected defects. Examples include fairness issues [22]

where models propagate biases in existing data, privacy issues [20]
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where models use sensitive personal data and causality issues [24]

where models cannot distinguish causal effects from correlations.

Interpretability [12] can mitigate the aforementioned challenges

as it provides a clear understanding of the internal workings of the

model and helps identify potential biases and errors. One way of

achieving interpretability is to train inherently interpretable models

such as decision trees [5] and sets [18] that allow for transparent in-

spection. However, such approaches typically sacrifice performance.

On the other hand, one can deploy a highly predictive complex

model, and then obtain a local explanation [25] for its predictions.

Unfortunately, the explanation may not provide an understanding

of the model’s overall behavior as local explanations provide insight

into specific predictions. In contrast, our approach aims to combine

the best of both worlds by introducing an interpretable tree-based

model that is informed by a highly predictive neural network.

Although interpretability provides a thorough understanding

of the model’s decision-making process, it does not suggest con-

crete actions for promoting fairness. To tackle substantial concerns

regarding fairness in predictive models, several studies have con-

centrated on integrating fairness constraints [11]. However, given

the complexity of most models, these constraints are usually im-

plemented through proxies and therefore, fairness in prediction is

not guaranteed. In contrast, our method proposes an alternative

solution that allows the direct integration of fairness constraints

on the training process, eliminating the need for proxies [28].

1.1 Contributions
In this work, we introduce NIDTs, a fair model that combines the

predictive power of neural networks with the interpretability of

decision trees. Our contributions encompass several key aspects.

(1) We propose a novel predictive model that has the structure

of an axis-aligned decision tree with linear predictors at

each leaf. NIDTs showcase enhanced predictive performance

as they incorporate the embeddings obtained from a task-

specific neural network into their linear predictors.

(2) We introduce an efficient decomposition training scheme

that builds upon the CART training algorithm. We show

analytically the existence of a NIDT that performs at least

as well as the informing network, while we also provide an

approximation bound for the performance of NIDTs.

(3) We demonstrate how fairness constraints can be directly

incorporated, in the form of domain knowledge constraints,

into NIDTs by solving a constrained convex optimization

problem at each leaf, resulting in a certified fair model.

(4) Finally, to validate the previous claims, we conduct an ex-

perimental evaluation of NIDTs using multiple real-world

datasets, where we verify the predictive power, the inter-

pretability and the fairness of NIDTs.
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Figure 1: (Left) A neural network 𝑓𝜃 , trained on the problem at hand, generates new expressive features (embeddings 𝑥) that are
linearly combined at the output layer to produce the network’s final prediction. (Right) The embeddings 𝑥 , generated by the
network’s last hidden layer, are used along with the initial features 𝑥 by the linear model at each leaf of the NIDT 𝜏 .

2 RELATED LITERATURE
There has been much interest in learning interpretable models,

especially decision trees [5], and in combining them with expres-

sive machine learning models for enhanced predictive performance.

[14] popularized the concept of knowledge distillation where first

a neural network is trained and then a soft decision tree is trained

on a dataset whose labels are produced by the network. Since then

multiple works have focused on deriving decision trees from partic-

ular model families, like random forests [10]. Significant research

has also been on model-agnostic approaches where decision trees

are constructed to resemble black-box models. [6] proposed born-

again trees, while [2] proposed an active sampling-based method

to extract global explanations. The aforementioned works focus on

creating decision trees that resemble complex predictive models.

On the other hand, our model does not seek to resemble a neu-

ral network but leverages the network’s embeddings to inform its

predictions. Other methodologies for creating expressive decision

trees include MIO [4] and using non-trivial predictors [21]. While

constructing such models can be computationally demanding, our

approach is tractable as the proposed training scheme builds upon

the computationally efficient CART algorithm.

In the field of fair machine learning, bias mitigation algorithms

are recognized as one of the most prominent approaches to address

ethical issues in high-stakes automated decision making. These

algorithms are categorized into pre-processing, in-processing, and

post-processing approaches [26]. In the first case [16], the bias

mitigation occurs during training. This is usually achieved by mini-

mizing the empirical risk regularized by a fairness metric surrogate.

However, using regularized fairness surrogates requires careful

hyperparameter selection and lacks explicit guarantees regarding

constraint satisfaction [3]. In contrast, we propose a certified fair

model that integrates, without the use of surrogates, fairness con-

straints directly into training. In this work, we focus on notions of

group fairness and specifically, demographic parity.

3 PROBLEM FORMULATION
NIDTs, which we denote as 𝜏 , are built upon axis-aligned decision

trees [5] with linear predictors at each leaf [29]. We denote the

input domain as X ⊆ R𝑑 and the output space as Y ⊆ R. An
axis-aligned split is defined by the constraint 𝐶 = (𝑥𝑖 ≤ 𝑐), where

𝑥𝑖 is the 𝑖-th coordinate of 𝑥 ∈ X with 𝑖 ∈ [𝑑] := {1, . . . , 𝑑} and
𝑐 ∈ R. The feasible set of an axis-aligned constraint 𝐶 is defined

as F (𝐶) = {𝑥 ∈ X| 𝑥 satisfies 𝐶}. A NIDT consists of three node

categories: root, internal, and leaf. Following the notation of [2],

we define 𝑁𝜏 to be the root node of 𝜏 and 𝑁 = (𝑁𝐿𝑒𝑓 𝑡 , 𝑁𝑅𝑖𝑔ℎ𝑡 ,𝐶)
to be an internal node, with 𝑁𝐿𝑒𝑓 𝑡 the left child node of 𝑁 , 𝑁𝑅𝑖𝑔ℎ𝑡
the right child node of 𝑁 and 𝐶 the corresponding axis-aligned

constraint of 𝑁 . Finally, we define 𝑁ℓ to be the ℓ-th leaf node of 𝜏 .

In a NIDT, predictions within each leaf node come from a linear

model that uses both the features of the dataset as well as features

generated by the hidden layers of a task-specific neural network.

This approach is motivated by the following observation. Neural

networks utilize their hidden layers to generate new expressive

features, known as embeddings (symbolically 𝑥 ), that are combined

linearly at the output layer to generate the network’s prediction.

The strong performance typically exhibited by neural networks can

be attributed to their ability to capture complex relationships within

the data through embeddings. By adding the embeddings into the

linear predictor of each leaf, we expect the NIDT to exhibit enhanced

predictive performance, similar to the performance achieved by the

embedding-generating network. Furthermore, by allowing NIDT

to perform axis-aligned splits only on the initial features of the

dataset, the path to each leaf remains interpretable, like a typical

decision tree. The proposed framework is depicted in Figure 1.

Formally, we denote a NIDT as the function 𝜏 : X × ˜X → Y,

where
˜X ⊆ R ˜𝑑

is the domain of the embeddings. Specifically, the

ℓ-th leaf node 𝑁ℓ can be interpreted as the function 𝑁ℓ (𝑥, 𝑥) =

𝛼𝑇
ℓ
𝑥+𝛽𝑇

ℓ
𝑥+𝑐ℓ , where𝛼ℓ ∈ R𝑑 , 𝛽ℓ ∈ R

˜𝑑
and 𝑐ℓ ∈ R. An internal node

𝑁 = (𝑁𝐿𝑒𝑓 𝑡 , 𝑁𝑅𝑖𝑔ℎ𝑡 ,𝐶) can be interpreted as𝑁 (𝑥, 𝑥) = 𝑁𝐿𝑒𝑓 𝑡 (𝑥, 𝑥),
if 𝑥 ∈ F (𝐶) and 𝑁 (𝑥, 𝑥) = 𝑁𝑅𝑖𝑔ℎ𝑡 (𝑥, 𝑥) otherwise. Based on the

previous definition, 𝜏 (𝑥, 𝑥) = 𝑁𝜏 (𝑥, 𝑥). For a given node 𝑁 , we

denote the conjunction of constraints from the root to 𝑁 as𝐶𝑁 . For

an internal node 𝑁 = (𝑁𝐿𝑒𝑓 𝑡 , 𝑁𝑅𝑖𝑔ℎ𝑡 ,𝐶) we have𝐶𝑁𝐿𝑒𝑓 𝑡
= 𝐶𝑁 ∧𝐶

and 𝐶𝑁𝑅𝑖𝑔ℎ𝑡
= 𝐶𝑁 ∧ (¬𝐶), while for the root we have 𝐶𝑁𝜏

= 𝑇𝑟𝑢𝑒 .

We also denote a neural network as the function 𝑓𝜃 : X → Y,

where 𝜃 is the set of the trainable parameters. We consider the

densely connected architecture, where each neuron receives as

inputs the outputs of the previous layer. Formally, 𝑓𝜃 (𝑥) =𝑊𝐾𝑥𝐾 +
𝑏𝐾 , 𝑥𝑘 = 𝜎 (𝑊𝑘−1𝑥𝑘−1 + 𝑏𝑘−1), 𝑘 = 1, . . . , 𝐾 . In this definition, 𝐾

is the number of the hidden layers, 𝜎 : R → R is the activation
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function,𝑊𝑘 ∈ R𝑛𝑘×𝑛𝑘−1 is the weight matrix, 𝑏𝑘 ∈ R𝑛𝑘 the bias

vector and𝑛𝑘 the number of neurons at layer 𝑘 . For ease of notation,

we define 𝑥0 = 𝑥 and 𝑛0 = 𝑑 . We also define the output of the 𝑘-th

layer as 𝑓 𝑘
𝜃
(𝑥) ∈ R𝑛𝑘 . In this notation, in leaf ℓ for 𝑥 ∈ F (𝐶ℓ ), we

have 𝑁ℓ (𝑥, 𝑥) = 𝛼𝑇ℓ 𝑥 + 𝛽
𝑇
ℓ
𝑥 +𝑐ℓ = 𝛼𝑇ℓ 𝑥 + 𝛽

𝑇
ℓ
𝑓 𝐾
𝜃
(𝑥) +𝑐ℓ with ˜𝑑 = 𝑛𝐾

and 𝑓 𝐾
𝜃
(𝑥) = 𝑥 . In the rest of the paper, we focus on the regression

task, where X = R𝑑 and Y = R.

3.1 NIDT Generation Algorithm
By denoting as L : Y×Y → R≥0 the convex loss function used for

regression, the nominal optimization problem for training NIDTs is

min

𝜃,𝜏

∑︁
(𝑥,𝑦) ∈D

L(𝑓𝜃 (𝑥), 𝑦) + L(𝜏 (𝑥, 𝑓 𝐾
𝜃
(𝑥)), 𝑦), (1)

where the sum is taken over all pairs of features and labels (𝑥,𝑦) in
the datasetD. To solve problem (1) we propose the following decom-

position approach. First, a neural network 𝑓𝜃 is trained by minimiz-

ing the first part of (1), i.e. min𝜃

∑
(𝑥,𝑦) ∈D L(𝑓𝜃 (𝑥), 𝑦), using SGD.

Then, a NIDT that uses the embeddings generated by the trained

𝑓𝜃 is constructed to minimize min𝜏
∑

(𝑥,𝑦) ∈D L(𝜏 (𝑥, 𝑓 𝐾
𝜃
(𝑥)), 𝑦).

Given that the network is already trained, we can augment the

initial dataset with the generated embeddings by adding 𝑥 = 𝑓 𝐾
𝜃
(𝑥)

to D. Finally, the NIDT can be obtained efficiently by training a

decision tree with linear predictors on the augmented dataset using

the CART algorithm. To obtain an interpretable model we impose

that the axis-aligned splits should be conducted solely upon the

original features. The procedure is described in Algorithm 1.

Algorithm 1 Decomposition Training Scheme for (1)

1: Input: Training set D, convex loss function L, convex regu-

larizer function R.
2: Initialize neural network 𝑓𝜃 , where 𝜃 is the set of trainable

parameters.

3: Calculate 𝜃∗ = argmin𝜃

∑
(𝑥,𝑦) ∈D L(𝑓𝜃 (𝑥), 𝑦) using SGD.

4: Construct the augmented training dataset
˜D =

{(𝑥, 𝑥,𝑦) |∀(𝑥,𝑦) ∈ D, 𝑥 = 𝑓 𝐾
𝜃 ∗
(𝑥)}.

5: Construct the NIDT 𝜏 using the CART algorithm on
˜D, re-

stricting the axis-aligned splits upon the initial features. The

impurity for the CART algorithm is calculated using L. Each

linear model is trained on all features by solving a regularized

least squares problem with regularizer R.
6: Return 𝑓𝜃 ∗ , 𝜏

By decomposing problem (1), we can train NIDTs efficiently. We

first train the neural network 𝑓𝜃 and then, once 𝑓𝜃 is trained, a

decision tree with linear predictions can be efficiently generated

using the CART algorithm on the augmented dataset.

3.2 Analytical Guarantees
For the proposed training scheme, we begin by presenting the

following existence theorem.

Theorem 3.1. Given a trained neural network 𝑓𝜃 : X → R, there
exists a NIDT 𝜏∗ : X × ˜X → R that utilizes the embeddings of 𝑓𝜃 and
performs at least as well as 𝑓𝜃 .

Additionally, we present, under two mild assumptions, an ap-

proximation bound for the constructed NIDT. For ease of exposition,

we also assume 𝑥 ∈ [0, 1]𝑑 , 𝑥 ∈ [0, 1] ˜𝑑 . We define 𝑓 : X → R to

be the underlying truth function and 𝑓𝜃 be its approximation by a

neural network that is used to inform the NIDT 𝜏∗.

Assumption 3.2. The estimation error is uniformly bounded, i.e.

|𝑓 (𝑥) − 𝑓𝜃 (𝑥) | ≤ K(𝑛),∀𝑥 ∈ [0, 1]𝑑 .

This assumption has been used in several works in the literature

regarding prescriptive trees and knowledge distillation [27].

Assumption 3.3. Each weight of 𝑓𝜃 and 𝜏∗ is bounded by𝑚 > 0.

Theorem 3.4. Under the above assumptions, the difference between
𝜏∗ and 𝑓 is bounded by |𝑓 (𝑥)−𝜏∗ (𝑥, 𝑓 𝐾

𝜃
(𝑥)) | ≤ K(𝑛) +𝑚(𝑑 +2 ˜𝑑 +2).

Next, we describe how domain knowledge can be included in

NIDTs by solving a convex optimization problem at each leaf.

3.3 Incorporating Domain Knowledge for
Fairness

A crucial requirement for predictive tasks in practice is to incor-

porate domain knowledge. Adding domain knowledge, such as

fairness constraints, can improve model fairness and safety. Ex-

plicit incorporation of knowledge through constraints is hard for

many tree-based algorithms as they rely on recursive partitioning

of the data, making it challenging to impose constraints across

branches. We consider knowledge constraints of the form,

if ℎ𝑖 (𝑥) ≤ 0,∀𝑖 ∈ [𝑚], then 𝜏 (𝑥, 𝑓 𝐾
𝜃
(𝑥)) should belong in I, (2)

where ℎ𝑖 : X → R, 𝑖 ∈ [𝑚], are convex functions and I ⊆ Y is a

closed or a half-line interval in which the NIDT’s prediction should

belong. An example for drug prescription would be if 𝐵𝑀𝐼 ≥ 30,
then the prescribed dosage by 𝜏 (𝑥, 𝑓 𝐾

𝜃
(𝑥)) should be ≥ 20mg.

Typically, the CART algorithm fits a linear model at each leaf ℓ

by solving the convex optimization problem

min

𝛼ℓ ,𝛽ℓ ,𝑐ℓ

∑︁
(𝑥,𝑥̃,𝑦) ∈ ˜Dℓ

L(𝛼𝑇ℓ 𝑥 + 𝛽𝑇ℓ 𝑥 + 𝑐ℓ , 𝑦) + 𝜆ℓR(𝛼ℓ , 𝛽ℓ , 𝑐ℓ ), (3)

where
˜Dℓ is the enhanced dataset for leaf ℓ , i.e. ˜Dℓ = {(𝑥, 𝑥,𝑦) |∀(𝑥,𝑦)

∈ D, 𝑥 = 𝑓 𝐾
𝜃
(𝑥), 𝑥 ∈ F (𝐶ℓ )}, R : R𝑑 × R ˜𝑑 × R→ R≥0 is the con-

vex regularizing function and 𝜆ℓ ∈ R≥0 is the leaf’s regularizer

multiplier. To explicitly incorporate domain knowledge constraints,

we modify the CART algorithm to solve the following constrained

convex optimization problem at leaf ℓ

min

𝛼ℓ ,𝛽ℓ ,𝑐ℓ

∑
(𝑥,𝑥̃,𝑦) ∈ ˜Dℓ

L(𝛼𝑇
ℓ
𝑥 + 𝛽𝑇

ℓ
𝑥 + 𝑐ℓ , 𝑦) + 𝜆ℓR(𝛼ℓ , 𝛽ℓ , 𝑐ℓ )

s.t. (𝛼𝑇
ℓ
𝑥 + 𝛽𝑇

ℓ
𝑥 + 𝑐ℓ ) ∈ I, ∀(𝑥, 𝑥) ∈ ˜Dℓ,ℎ .

(4)

where
˜Dℓ,ℎ := {(𝑥, 𝑥) ∈ ˜Dℓ : ℎ𝑖 (𝑥) ≤ 0,∀𝑖 ∈ [𝑚]}. Given that in

practice, the loss is the MSE and the regularizer the ℓ2 norm (Ridge),

(4) is a convex quadratically constrained quadratic problem that

can be solved efficiently using commercial solvers.

3.4 Comparison with Benchmarks
We compare the𝑅2 (coefficient of determination) achieved by NIDTs

against that of multiple tree models on 15 publicly available UCI
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Table 1: Test 𝑅2 for 15 UCI datasets across all models. The best 𝑅2 per dataset is highlighted.

Models abalone ailerons airfoil cccp cpu-act

CART 0.46 ± 0.02 0.67 ± 0.02 0.53 ± 0.04 0.92 ± 0.01 0.85 ± 0.12

CART-L 0.56 ± 0.04 0.80 ± 0.01 0.86 ± 0.03 0.94 ± 0.00 0.93 ± 0.15

BA 0.44 ± 0.02 0.66 ± 0.02 0.49 ± 0.05 0.91 ± 0.00 0.88 ± 0.04

BA-L 0.57 ± 0.02 0.80 ± 0.03 0.85 ± 0.02 0.94 ± 0.00 0.98 ± 0.00
ST 0.46 ± 0.02 0.62 ± 0.02 0.53 ± 0.07 0.85 ± 0.08 0.83 ± 0.10

ST-L 0.57 ± 0.03 0.66 ± 0.10 0.65 ± 0.09 0.91 ± 0.08 0.96 ± 0.01

ME 0.43 ± 0.04 0.65 ± 0.08 0.46 ± 0.07 0.91 ± 0.01 0.68 ± 0.14

ME-L 0.54 ± 0.05 0.63 ± 0.11 0.72 ± 0.05 0.93 ± 0.01 0.73 ± 0.03

ORT 0.47 ± 0.03 0.69 ± 0.01 0.61 ± 0.04 0.92 ± 0.00 0.89 ± 0.04

ORT-L 0.56 ± 0.03 0.80 ± 0.01 0.82 ± 0.02 0.93 ± 0.00 0.98 ± 0.00
NIDT (ours) 0.59 ± 0.02 0.82 ± 0.02 0.88 ± 0.02 0.95 ± 0.00 0.98 ± 0.00
NIDT relative 98.12% 105.67% 99.63% 100.72% 100.26%

Models cpu-small elevators housing kin8nm life-exp

CART 0.84 ± 0.12 0.46 ± 0.03 0.72 ± 0.08 0.36 ± 0.01 0.85 ± 0.01

CART-L 0.97 ± 0.00 0.81 ± 0.01 0.77 ± 0.07 0.65 ± 0.02 0.74 ± 0.06

BA 0.88 ± 0.04 0.46 ± 0.02 0.71 ± 0.05 0.35 ± 0.02 0.84 ± 0.02

BA-L 0.97 ± 0.01 0.82 ± 0.01 0.78 ± 0.07 0.65 ± 0.02 0.89 ± 0.04

ST 0.82 ± 0.11 0.44 ± 0.05 0.7 ± 0.07 0.34 ± 0.02 0.73 ± 0.07

ST-L 0.95 ± 0.02 0.76 ± 0.10 0.76 ± 0.10 0.63 ± 0.01 0.78 ± 0.08

ME 0.72 ± 0.18 0.47 ± 0.02 0.69 ± 0.09 0.34 ± 0.04 0.64 ± 0.08

ME-L 0.91 ± 0.13 0.78 ± 0.02 0.74 ± 0.11 0.62 ± 0.05 0.80 ± 0.09

ORT 0.88 ± 0.04 0.49 ± 0.02 0.74 ± 0.08 0.43 ± 0.02 0.88 ± 0.00

ORT-L 0.96 ± 0.00 0.83 ± 0.02 0.78 ± 0.14 0.68 ± 0.02 0.94 ± 0.03

NIDT (ours) 0.98 ± 0.00 0.87 ± 0.04 0.85 ± 0.04 0.72 ± 0.01 0.95 ± 0.01
NIDT relative 100.12% 98.26% 100.72% 99.81% 100.49%

Models parkinsons-m parkinsons-t steel superconduct wine

CART 0.12 ± 0.02 0.12 ± 0.02 0.97 ± 0.01 0.74 ± 0.01 0.27 ± 0.02

CART-L 0.23 ± 0.02 0.23 ± 0.02 1.0 ± 0.00 0.66 ± 0.25 0.35 ± 0.02

BA 0.12 ± 0.03 0.12 ± 0.03 0.97 ± 0.01 0.74 ± 0.01 0.26 ± 0.02

BA-L 0.25 ± 0.02 0.26 ± 0.02 1.0 ± 0.00 0.84 ± 0.02 0.33 ± 0.05

ST 0.13 ± 0.02 0.13 ± 0.03 0.94 ± 0.04 0.74 ± 0.01 0.24 ± 0.03

ST-L 0.25 ± 0.02 0.27 ± 0.02 1.0 ± 0.00 0.85 ± 0.01 0.31 ± 0.03

ME 0.13 ± 0.04 0.13 ± 0.03 0.89 ± 0.01 0.46 ± 0.09 0.21 ± 0.03

ME-L 0.26 ± 0.07 0.27 ± 0.10 0.97 ± 0.01 0.86 ± 0.11 0.32 ± 0.04

ORT 0.14 ± 0.02 0.15 ± 0.03 0.98 ± 0.00 0.77 ± 0.01 0.28 ± 0.03

ORT-L 0.27 ± 0.02 0.32 ± 0.04 0.99 ± 0.00 0.87 ± 0.01 0.34 ± 0.03

NIDT (ours) 0.38 ± 0.03 0.43 ± 0.03 1.0 ± 0.00 0.95 ± 0.00 0.38 ± 0.02
NIDT relative 94.42% 98.17% 100.01% 105.82% 99.46%

datasets [13]. Specifically, we compare against the CART trees [5],

born-again trees (BA) [6], student-teacher (ST) trees [14], model

extraction (ME) trees [2] and optimal regression trees (ORT) [4].

All methods are tested with both constant and linear predictors (-L).

For the NIDT, we fit a Ridge regression model at each leaf. We also

report the ratio between the𝑅2 of the NIDT and the𝑅2 of the inform-

ing network. The higher the ratio, the better the NIDT performs

compared to the network. The hyperparameters of all models were

optimized using 3-fold cross-validation, with the specific values

detailed in the Appendix. For each dataset, we run 10 independent

simulations and report the mean and standard deviation of the 𝑅2

in Table 1.

We observe that the NIDTs outperform all benchmarks across

all datasets, confirming their superior performance. Furthermore,

we also observe that NIDTs perform at least 94.42% as well as

the informing network, while in 8 out of the 15 datasets, they

outperform it. Thus, it can be seen that in the majority of the cases,

our proposed training scheme can indeed retrieve a NIDT that

outperforms the informing network. Next, we describe how NIDTs

can be used to extract an interpretable warfarin prescription policy.
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3.5 An Interpretable Drug Dosage Policy
According to the International Warfarin Pharmacogenetics Con-

sortium, warfarin is the most widely used oral anticoagulant agent

worldwide. Determining the suitable dosage is challenging as it

may differ by a factor of ten among patients, and inaccurate dosages

can result in severe adverse effects [8]. For this study, we use the

publicly available dataset collected by [8] and apply NIDTs to es-

timate the correct weekly stable dosage. The dataset contains the

actual stable dose for 5, 701 patients. Upon data preprocessing, by

eliminating missing values and outliers, we acquire a dataset of

3, 109 patients. The patient covariates consist of demographic in-

formation (gender, race, etc), diagnostic information (reason for

treatment, e.g. cardiomyopathy), and genetic information (presence

of CYP2C9, VKORC1 genotype polymorphisms).

Figure 2: The NIDT for the warfarin prescription. The left
arrow corresponds to "Yes" and the other to “No”.

We employ a NIDT with hyperparameters selected as in Section

3.4. Approximately 60.8% of NIDT’s predictions fall within 7 mg

from the true weekly stable dosage, which is an average daily de-

viation of at most 1 mg. This is the best performance compared

to all benchmarks. Figure 2 displays the resulting NIDT. We ob-

serve that the most prevalent features in the NIDT are whether

VKORC1 and CYP2C9 genotypes are present, the BMI of the pa-

tient, and whether the patient has a mechanical heart valve. These

features are known to be strongly associated with warfarin dosage

requirements [15, 19, 23]. The deployed NIDT learns this relation-

ship and provides a trasparent dosing guideline where the effect of

the relevant features is clear. Indeed, each path to a leaf creates an

interpretable and meaningful partitioning of patients into groups.

For each group, a distinct linear model that uses both the initial

features and the embeddings of the informing network predicts the

stable weekly dosage of each patient within the group.

3.6 Reducing Gender Bias by Integrating
Fairness Constraints

We now describe how the methodology of Section 3.3 can be used

for creating certified fair NIDTs. We consider a setting where for

each instance 𝑖 we have access to a sensitive attribute 𝑠𝑖 ∈ {0, 1}, i.e.

D = {(𝑥𝑛, 𝑠𝑛, 𝑦𝑛)}𝑛𝑖=1, |D| = 𝑛, that represents the protected group
membership of the 𝑖-th instance. For example, 𝑠𝑖 = 1 may represent

that instance 𝑖 belongs to a specific demographic group. To quantify

disparities across different groups, we focus on demographic parity

(DP) [1]. DP requires the regressor’s predictions to be statistically

independent of the sensitive attribute, i.e., ℎ(𝑥 |𝑠 = 0) = ℎ(𝑥 |𝑠 = 1),
where ℎ : X → R is the regressor under examination. An approach

frequently used to develop fair regressors is to enforce the absolute

difference in DP, i.e. Δℎ (𝑥) = |ℎ(𝑥 |𝑠 = 0) − ℎ(𝑥 |𝑠 = 1) |, to be close

to zero through proxies [28].

To tackle this problem, we take a different approach where in-

stead of using proxies, we incorporate the constraint Δ𝜏 (𝑥) ≤ 𝜖 ,

with 𝜖 being a small positive value that controls for the maximum

allowed DP in each instance, directly into the training of the NIDT

using the methodology described in Section 3.3. More specifically,

for a given NIDT 𝜏 and 𝑥 ∈ F (𝐶ℓ ), where ℓ is a leaf of 𝜏 , we have
that Δ𝜏 (𝑥) = |𝛼ℓ,𝑠 +𝛽𝑇ℓ (𝑓

𝐾 (𝑥 |𝑠 = 1)− 𝑓 𝐾 (𝑥 |𝑠 = 0)) | ≤ 𝜖 , where 𝛼ℓ,𝑠
is the coefficient of the sensitive attribute 𝑠 for the linear model of

leaf ℓ . By linearizing the constraint, we obtain that during the train-

ing of the NIDT, at each leaf we need to solve the following convex

optimization problem to satisfy explicitly fairness requirements.

min

𝛼ℓ ,𝛽ℓ ,𝑐ℓ

∑
(𝑥,𝑥̃,𝑦) ∈ ˜Dℓ

L(𝛼𝑇
ℓ
𝑥 + 𝛽𝑇

ℓ
𝑥 + 𝑐ℓ , 𝑦) + 𝜆ℓR(𝛼ℓ , 𝛽ℓ , 𝑐ℓ )

s.t. 𝛼ℓ,𝑠 + 𝛽𝑇ℓ (𝑓
𝐾 (𝑥 |𝑠 = 1) − 𝑓 𝐾 (𝑥 |𝑠 = 0)) ≤ 𝜖, ∀𝑥 ∈ ˜Dℓ ,

−𝛼ℓ,𝑠 + 𝛽𝑇ℓ (𝑓
𝐾 (𝑥 |𝑠 = 0) − 𝑓 𝐾 (𝑥 |𝑠 = 1)) ≤ 𝜖, ∀𝑥 ∈ ˜Dℓ .

(5)

We test our approach on the Student Performance Data Set [9].

The data describe student performance in secondary education

of two Portuguese schools. The attributes include student grades,

demographics, social, and other school-related features. The task

is to predict the final grade (ranging from 0 to 20) of each student.

Our goal is to apply our approach to mitigate gender bias in the

prediction of the final grade. In the experiment, we consider sex as

the sensitive attribute. We compare the error variance, i.e. 1−𝑅2, as
well as the actual average DP achieved by the NIDT against that of

the informing neural network. The hyperparameters were selected

as in Section 3.4, while for the NIDT we test values of 𝜖 ranging

from 10
−3

to 1. We run 10 independent simulations for each model

and we report the results in Figure 3.

We observe that the constrained (fair) NIDT outperforms in

terms of predictive performance, i.e. 𝑅2, the unconstrained inform-

ing neural network for 𝜖 > 0.005. This implies that even with a

minimal allowed influence from the sensitive attribute, our method

can retrieve a fair NIDT with enhanced predictive capabilities. We

also observe that the average DP achieved by the fair NIDT is sig-

nificantly lower than the corresponding maximum allowed DP, i.e.

𝜖 , and also is always lower than the one achieved by the network.

Overall, the fair NIDT consistently demonstrates superior fairness

and higher accuracy than the informing network.

4 CONCLUSIONS
Our work adds to an emerging body of research, i.e. generating a

simultaneously expressive, interpretable, and fair predictive model.

We propose NIDT, a model that combines the predictive power

of neural networks with the interpretability of decision trees. To

generate a NIDT we introduce a training scheme that first trains
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Figure 3: (Top) Error variance (1 − 𝑅2) achieved by the un-
constrained neural network and the constrained (fair) NIDT.
(Bottom) Actual average DP achieved by the fair NIDT and
the unconstrained neural network that informs the NIDT.

a task-specific neural network and then utilizes its embeddings to

inform predictions. The proposed scheme facilitates fairness by pro-

viding the flexibility to incorporate fairness constraints directly into

the training process, compared to other approaches that use surro-

gates, resulting in a certified fair model. Experiments on multiple

real-world datasets verify the predictive power, the interpretability

and the fairness of NIDTs. Future research could investigate an

extension to policy learning scenarios and to decision-making.
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A PROOFS OF THEOREMS
Theorem 3.1 Given a trained neural network 𝑓𝜃 : X → R, there exists a NIDT 𝜏∗ : X × ˜X → R that utilizes the embeddings of 𝑓𝜃 and performs
at least as well as 𝑓𝜃 .

Proof. Let 𝑓𝜃 : X → R be a trained neural network at the task at hand, L(·, ·) : Y × Y → R≥0 the loss function, and D the dataset

under consideration. We consider the degenerate NIDT 𝜏 of depth 0, i.e. 𝑁𝜏 (𝑥, 𝑥) = 𝛼𝑇 𝑥 + 𝛽𝑇 𝑥 + 𝑐 , with 𝛼 = 0, 𝛽 = 𝑤𝐾 and 𝑐 = 𝑏𝐾 , where

𝑤𝐾 and 𝑏𝐾 are the weights of the output layer of 𝑓𝜃 . We have that L(𝑓𝜃 (𝑥), 𝑦) = L(𝜏 (𝑥, 𝑓 𝐾
𝜃
(𝑥)), 𝑦),∀(𝑥,𝑦) ∈ D, since 𝜏 replicates exactly

𝑓𝜃 by construction.

Therefore, if we denote as 𝜏∗ the solution to min𝜏
∑

(𝑥,𝑦) ∈D L(𝜏 (𝑥, 𝑓 𝐾
𝜃
(𝑥)), 𝑦), i.e. 𝜏∗ = argmin𝜏

∑
(𝑥,𝑦) ∈D L(𝜏 (𝑥, 𝑓 𝐾

𝜃
(𝑥)), 𝑦), we obtain∑︁

(𝑥,𝑦) ∈D
L(𝜏∗ (𝑥, 𝑓 𝐾

𝜃
(𝑥)), 𝑦) ≤

∑︁
(𝑥,𝑦) ∈D

L(𝜏 (𝑥, 𝑓 𝐾
𝜃
(𝑥)), 𝑦) =

∑︁
(𝑥,𝑦) ∈D

L(𝑓𝜃 (𝑥), 𝑦) . (6)

□

Theorem 3.4 Under the above assumptions, the difference between 𝜏∗ and 𝑓 is bounded by |𝑓 (𝑥) − 𝜏∗ (𝑥, 𝑓 𝐾
𝜃
(𝑥)) | ≤ K(𝑛) +𝑚(𝑑 + 2

˜𝑑 + 2).

Proof. Let 𝑥 ∈ [0, 1]𝑑 . We have that:

|𝑓 (𝑥) − 𝜏∗ (𝑥, 𝑓 𝐾
𝜃
(𝑥)) | = |𝑓 (𝑥) − 𝑓𝜃 (𝑥) + 𝑓𝜃 (𝑥) − 𝜏∗ (𝑥, 𝑓 𝐾𝜃 (𝑥)) | ≤

≤ |𝑓 (𝑥) − 𝑓𝜃 (𝑥) | + |𝑓𝜃 (𝑥) − 𝜏∗ (𝑥, 𝑓 𝐾𝜃 (𝑥)) |. (7)

Assuming that 𝑥 ∈ F (𝐶ℓ ), where ℓ is a leaf of 𝜏∗, we have that
|𝑓𝜃 (𝑥) − 𝜏∗ (𝑥, 𝑓 𝐾𝜃 (𝑥)) | = |𝛼𝑇ℓ 𝑥 + (𝛽ℓ −𝑤𝐾 )𝑇 𝑥 + 𝑐ℓ − 𝑏𝐾 |, (8)

where𝑤𝐾 is the weight vector and 𝑏𝐾 is the bias of the output layer of the network. By plugging equation (8) back into equation (7) and

using the assumption on the uniformly bounded estimation error we obtain that

|𝑓 (𝑥) − 𝜏∗ (𝑥, 𝑓 𝐾
𝜃
(𝑥)) | ≤ K(𝑛) + |𝛼𝑇ℓ 𝑥 + (𝛽ℓ −𝑤𝐾 )𝑇 𝑥 + 𝑐ℓ − 𝑏𝐾 | ≤

≤ K(𝑛) + max

ℓ,𝜃,𝑥∈X,𝑥̃∈ ˜X
|𝛼𝑇ℓ 𝑥 + (𝛽ℓ −𝑤𝐾 )𝑇 𝑥 + 𝑐ℓ − 𝑏𝐾 | ≤

≤ K(𝑛) + max

ℓ,𝑥∈X
|𝛼𝑇ℓ 𝑥 | + max

ℓ,𝜃,𝑥̃∈ ˜X
| (𝛽ℓ −𝑤𝐾 )𝑇 𝑥 | +max

ℓ,𝜃
|𝑐ℓ − 𝑏𝐾 | =

= K(𝑛) +𝑚𝑑 + 2𝑚 ˜𝑑 + 2𝑚 = K(𝑛) +𝑚(𝑑 + 2
˜𝑑 + 2). (9)

□

B EXPERIMENTAL SETUP
All computational experiments were performed using Python 3.9, Gurobi 9.5, Linear-Tree 0.3.5, Keras 2.10.0, and Scikit-learn 1.0. All

experiments were executed on an internal cluster with a 2.20GHz Intel(R) Xeon(R) Gold 5120 CPU and 256 GB memory.

The hyperparameters used for tuning all tree-based methods are described in Table 2. For the neural networks, we used the dense,

feed-forward architecture, with 10 neurons in the last hidden layer. The hyperparameters used for tuning the neural networks are described

in Table 3.

Table 2: Hyperparameters used for tuning all tree-based methods.

Max Depth Min Samples Split Min Samples Leaf

{3, 5, 7, 10, 100} {0.05, 0.1} {0.04, 0.06, 0.08}

Table 3: Hyperparameters used for tuning the neural networks.

Hidden Layers Neurons per Layer Activation Dropout Early Stopping Patience

{2, 3} {20, 50, 100} {ReLU, ELU, tanh} {0, 0.1, 0.2} {20}
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C DESCRIPTION OF DATASETS
A description of the datasets used in the experiments of Section 3.4 is provided in Table 4.

Table 4: Description of the 15 UCI datasets used. The number of features is calculated after converting categorical variables into
dummy/indicator variables.

Dataset Dataset Size Features

abalone 4,177 9

ailerons 13,750 40

airfoil 1,503 5

cccp 9,568 4

cpu-act 8,192 21

cpu-small 8,192 12

elevators 16,599 18

housing 1,059 68

kin8nm 8,192 8

life-exp 1,649 152

parkinsons-m 5,875 16

parkinsons-t 5,875 16

steel 35,040 15

superconduct 21,263 81

wine 4,898 11

D WARFARIN DOSING - BENCHMARKS
To evaluate the performance of the NIDTs on Warfarin prescription, we compare our approach with the benchmarks described in Section 3.4.

The hyperparameters of all benchmarks are tuned using 3-fold cross-validation, while the hyperparameters tested are described in Section

B of the Appendix. We run 10 independent simulations for each benchmark and we report the mean and the standard deviation of the

percentage of the predictions that fall within a range of 7 mg from the actual weekly stable dosage, which is an average deviation of at most

1 mg per day, in Table 5.

Table 5: Average percentage of the predictions that fall within a range of 7 mg from the actual weekly stable dosage.

Models Warfarin

CART 55.32 ± 1.47

CART-L 56.19 ± 1.60

BA 55.71 ± 2.10

BA-L 57.91 ± 1.88

ST 55.08 ± 1.90

ST-L 56.98 ± 1.52

ME 55.32 ± 2.16

ME-L 58.01 ± 2.51

ORT 54.29 ± 2.06

ORT-L 56.95 ± 1.93

NN 59.08 ± 2.33
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