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ABSTRACT
Algorithmic fairness is a widely studied area in machine learning
field. The tasks of fair regression and fair binary classification are
quite well explored up to the current moment. However, just few
works consider a problem of fair multi-class classification despite
its potential usefulness in areas like credit scoring, school and
university admission, criminal jurisdiction, etc. Indeed, in all these
issues, the predicted label may takemore than two values. The credit
liability may be estimated as ’low’,’medium’ and ’high’; the risk of
recidivism may also have several values; the future performance of
a student can be evaluated as a non-binary variable. In this paper,
we present a post-processing type algorithm that increases fairness
in multi-class classification problems. The core of our approach is
a linear programming problem that allows our algorithm to relabel
some predictions of the initial classifier in order to improve fairness
with a small possible loss in accuracy. We evaluate performance of
our algorithm on synthetic and real datasets. As the results show,
depending on the dataset, our algorithm increases fairness without
statistically significant loss in accuracy.
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1 INTRODUCTION

In the modern world a lot of AIs and, in particular, machine
learning technologies are used in many social areas leading to
various fairness issues. The concept of machine learning fairness is
reduction of a bias caused by abuse of the sensitive variables during
the decision-making process. Examples of sensitive variables are
gender, ethnicity, sexual orientation, disability, etc.

The work [26] provides an overview of fairness inML algorithms:
a lot of research is focused on such areas as criminal justice, immi-
gration, other public sectors and healthcare, which highlights the
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importance of studying ML fairness. The study [11] discusses the
legislative complexities that arise when trying to reduce discrimi-
nation of legally protected groups. Another work [22] is devoted
to fairness in the healthcare sector. In doing so, models learn from
historical data, which in the past was based partially on human
and structural biases. In this regard, discrimination arises for cer-
tain groups of patients. The paper [15] considers the problem of
violation of fairness in school based on racial characteristics when
predicting grades. One of the benchmarks in fair machine learning
is the COMPAS dataset that considers the problem of predicting the
recidivism of certain groups of prisoners. COMPAS data are used
in more studies to test different definitions of algorithmic fairness,
see [3, 8, 29].

As we see, in all cases above, a problem of fair classification
appears naturally. Despite a lot of papers on of fair binary clas-
sification see e.g., [2, 16] and references therein just few works
consider a problem of multi-class classification, see [7, 10, 19, 21].
However, in some cases the classification may be not binary, but
multinomial. For example, if a bank assesses the solvency of clients,
the gradation of “solvent” and “insolvent” may not be enough; it
can be necessary to divide customers into more categories such
as “unreliable”, “medium-reliable” and “reliable”. Another example
where more than two classes are required is the classification of
pathologies in the context of image analysis in medicine, see [23].
For COMPAS studies [3, 8, 29], a prisoner usually classified to sev-
eral risk recidivism groups. A student grade prediction problem
may also have more than two outcomes, see [7, 24].

In this article, we propose a Fairness Multiclass Classification
Linear Programming Algorithm (later on, FMCLP algorithm) for
solving the fair multiclass classification problem. FMCLP algorithm
is a post-processing type algorithm that processes the results of
an arbitrary classifier combined with the values of the sensitive
attribute and relabels them in order to improve a chosen fairness
metric. The core of our approach is the linear programming problem
corresponding to the output of a given classifier, values of the sensi-
tive attribute and a chosen fairness metric. Solution of this problem
allows us to improve the chosen fairness metric, see Section 4 for
detailed description of FMCLP algorithm. A merit of our algorithm
is its generality and lack of prior assumptions on a given dataset
and initial classifier. As we will see in Section 4, we can apply the
FMCLP algorithm to a big variety of classification problems and
fairness metrics. We tested FMCLP algorithm on two synthetic and
three real datasets, the results are presented in Section 5. Accord-
ing to the results, there is a decrease in the percentage of people
who are discriminated on all real datasets after implementation of
FMCLP algorithm. At the same time, the task of multi-classification
is applicable in various areas of life. Thus, this work has not only
technical but also social significance.
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2 RELATEDWORK
Binary classification. Some papers are aimed at working with
certain groups of classifiers, with the consideration of the classifi-
cation method as a “black box”. The article [2] presents a general
approach for the black box case in the context of binary classi-
fication. The proposed approach covers a wide range of fairness
definitions which can be formalized using linear inequalities in
conditional moments, such as demographic equality or equalized
odds. Based on this contribution, the fairlearn open source package
[5] is developed by Microsoft.

Multi-class classification. The paper [28] focuses essentially
on Support Vector Machine fair predictions. One of the main ideas
there is the addition to the loss function of a classical ML algorithm
a special term responsible for fairness improvement. The obtained
optimization problem can be interpreted as a mixed integer lin-
ear problem and solved by the modern developed techniques, see,
e.g, [13]. In another work [21], an approach for modifying clas-
sifier predictions by linear programming to achieve fairness in a
multi-class environment is also considered. Contribution [27] is
devoted to fair deep learning, particularly on image classification
task. The idea there is simultaneous training of sample weights and
neural network parameters trying to optimize accuracy and satisfy
fairness constraints, while keeping the architecture of the neural
network unchanged. We refer to study [7] for a detailed discussion
on demographic parity improvement in multidimensional setup.
The work [10] presents the debiasing multi-variable method. The
idea behind this preprocessing-type approach is preprocessing the
data in order to make all discriminated groups balanced and then
apply the initially given ML classifier. The other side of discrimi-
nation can be biases in prediction that affects minority subgroups
in the training data. To solve this problem, [19] proposed a post-
processing multi-accuracy audit framework. The principal idea here
is improving accuracy on discriminated minority subgroups using a
special algorithm “multi-accuracy boost” that processes the results
of a given black-box classifier and the values of protected attributes.

3 CONDITIONAL USE ACCURACY EQUALITY
In this section we discuss fairness metric conditional use accuracy
equality, later on cuae-metric. This metric is presented in [4] for
binary case; in this contribution we discuss its multidimensional
analogous (see [21] also). We decided to use this metric to show
how FMCLP algorithm performs because of its benefits against de-
mographic parity and equalized odds, see the end of this section for
more explanations. For definitions and properties of other fairness
metrics, we refer to [6, 18, 20] and references therein.

Consider some dataset with a label𝑌 , classifier 𝑅 and sensitive at-
tribute𝐴. We say that 𝑅 satisfies conditional use accuracy equality if
𝑃 (𝑌 = 𝑦 |𝑅 = 𝑦,𝐴 = 𝑎) = 𝑃 (𝑌 = 𝑦 |𝑅 = 𝑦,𝐴 = 𝑏), ∀𝑦 ∈ 𝑌, 𝑎, 𝑏 ∈ 𝐴
and cuae-metric of 𝑅 is the matrix of all probabilities 𝑃 (𝑌 = 𝑦 |𝑅 =

𝑦,𝐴 = 𝑎), 𝑦 ∈ 𝑌, 𝑎 ∈ 𝐴. To numerically evaluate a classifier in terms
of cuae-metric, for any classifier 𝑅 we define cuae-difference by

max
𝑦∈𝑌,𝑎,𝑏∈𝐴

(𝑃 (𝑌 = 𝑦 |𝑅 = 𝑦,𝐴 = 𝑎) − 𝑃 (𝑌 = 𝑦 |𝑅 = 𝑦,𝐴 = 𝑏) , cuae-ratio

by

max
𝑦∈𝑌,𝑎,𝑏∈𝐴

𝑃 (𝑌 = 𝑦 |𝑅 = 𝑦,𝐴 = 𝑎)
𝑃 (𝑌 = 𝑦 |𝑅 = 𝑦,𝐴 = 𝑏) (1)

and cuae-variation by
max

𝑥,𝑦∈𝑌,𝑎,𝑏∈𝐴
(𝑃 (𝑌 = 𝑥 |𝑅 = 𝑥,𝐴 = 𝑎) − 𝑃 (𝑌 = 𝑦 |𝑅 = 𝑦,𝐴 = 𝑏)) .

It is clear from the definition, that if cuae-difference of a classi-
fier is close to zero or cuae-ratio is close to one, then the classifier
almost satisfies cuae. The cuae-variation measures dispersion of
performance of a classifier over different protected groups. The
cuae-metric reminds equalized odds metric (see [12] for the defini-
tion); the difference is that we do not impose equations like

𝑃 (𝑌 = 𝑦1 |𝑅 = 𝑦2, 𝐴 = 𝑎) = 𝑃 (𝑌 = 𝑦1 |𝑅 = 𝑦2, 𝐴 = 𝑏),
𝑦1 ≠ 𝑦2 ∈ 𝑌, 𝑎, 𝑏 ∈ 𝐴, (2)

that makes the cuae-metric more flexible than equalized odds
and gives more chances for a classifier to satisfy it. Observe that
regardless of relations between variables, the ideal classifier 𝑅 = 𝑌

fulfils cuae, that in case of correlation between𝐴 and 𝑌 makes cuae
more preferable than demographic parity metric (see [9]).

4 FMCLP ALGORITHM
This section provides a description of the implementation of FMCLP
algorithm for cuae-metric. We show the input requirements, all
steps of the algorithm and how the problem is reduced to linear
programming.

Input. Input is a dataset for classification problem with an al-
ready trained ML classifier (later on initial classifier) that solves a
multi-class classification task. We assume that the initial classifier
returns prior probabilities that a certain observation belongs to one
of the classes, later on we refer to these probabilities as black-box
probabilities. Suppose that one of the features is a sensitive attribute.
We do not assume any particular structure of the initial classifier,
like classical ML algorithm, neural network, etc.

Step 1. For 𝑠 >> 1 randomly chosen observations we build
the matrix consisting of the corresponding black-box probabilities,
values of the sensitive attribute and true labels.

Step 2. For the matrix obtained in Step 1 we solve the classifi-
cation problem (features are the sensitive attribute and black-box
probabilities, target is the labels) trying to maximize accuracy and
satisfy cuae condition in the following way. Assume that the sen-
sitive attribute takes values from A := {1, 2, ..., 𝑎}, where 𝑎 > 1
and L = {1, 2, ..., 𝑙} is the set of labels. We split all considered ob-
servations into 𝑎 groups, say, 𝐴1, 𝐴2, ..., 𝐴𝑎 regarding to their value
of the sensitive attribute; suppose that 𝐴𝑖 , 𝑖 ∈ A consists of 𝐾𝑖
observations andK𝑖 = {1, 2, ..., 𝐾𝑖 }. Let 𝑝 (𝑘,𝑗 )𝑖

, 𝑖 ∈ A, 𝑗 ∈ L, 𝑘 ∈ K𝑖

be the black-box probability that the 𝑘-th observation from 𝐴𝑖 be-
longs to class 𝑗 and 𝑙𝑘

𝑖
be the true label of this observation. The

initial classifier classifies each observation to the class with the
biggest value of the corresponding probability 𝑝 (𝑘,𝑗 )

𝑖
. Our aim is

to reclassify some of the observations above in order to improve
cuae-metric with the smallest possible decrease in accuracy. Denote
as C the set of all possible 𝑐 (𝑘,𝑗 )

𝑖
∈ {0, 1}, 𝑖 ∈ A, 𝑗 ∈ L, 𝑘 ∈ K𝑖 such

that for all 𝑖, 𝑘
∑
𝑗∈L

𝑐
(𝑘,𝑗 )
𝑖

= 1. Let 𝑌 be the true mapping between

the features and target, and 𝐶𝑙 be the classifier we are looking for.
We maximize ∑︁

𝑖∈A, 𝑗∈L,𝑘∈K𝑖

𝑝
(𝑘,𝑗 )
𝑖

𝑐
(𝑘,𝑗 )
𝑖

(3)
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Figure 1: Predicting of FMCLP Algorithm.

over C subject to cuae-constraint

𝑃 (𝐶𝑙 = 𝑥 |𝑌 = 𝑥,𝐴 = 𝑎) = 𝑃 (𝐶𝑙 = 𝑦 |𝑌 = 𝑦,𝐴 = 𝑎),
∀𝑎 ∈ A,∀𝑥,𝑦 ∈ L . (4)

Let 𝐼𝑎,𝑥 stands for the set of observations, such that their value
of sensitive attribute is 𝑎 and their label is 𝑥 . The last line can be
rewritten in terms of a linear programming problem. Indeed, for all
𝑥 ∈ L and 𝑎 ∈ 𝐴

𝑃 (𝐶𝑙 = 𝑥 |𝑌 = 𝑥,𝐴 = 𝑎) =

=
𝑃 (𝐶𝑙 = 𝑥,𝑌 = 𝑥,𝐴 = 𝑎)

𝑃 (𝑌 = 𝑥,𝐴 = 𝑎) =

∑
𝑘∈𝐼𝑎,𝑥 , 𝑗∈L

𝑐
(𝑘,𝑗 )
𝑎

|𝐼𝑎,𝑥 |
, (5)

where | · | denotes the number of elements in a finite set. Hence,
we can rewrite our problem as max

∑
𝑖∈A, 𝑗∈L,𝑘∈K𝑖

𝑝
(𝑘,𝑗 )
𝑖

𝑐
(𝑘,𝑗 )
𝑖

over

C subject to∑
𝑘∈𝐼𝑎,𝑥 , 𝑗∈L

𝑐
(𝑘,𝑗 )
𝑎

|𝐼𝑎,𝑥 |
=

∑
𝑘∈𝐼𝑎,𝑦 , 𝑗∈L

𝑐
(𝑘,𝑗 )
𝑎

|𝐼𝑎,𝑦 |
, ∀𝑎 ∈ A, 𝑥,𝑦 ∈ L . (6)

This linear programming problem can be solved using the HiGHS
dual simplex solver method, see [13]. The result of this solution is
some set 𝑐 (𝑘,𝑗 )

𝑖
, 𝑖 ∈ A, 𝑗 ∈ L, 𝑘 ∈ K𝑖 . For any fixed 𝑖 ∈ A, 𝑗 ∈ L∑

𝑘

𝑐
(𝑘,𝑗 )
𝑖

=1 and hence it implies to a natural way of classification 𝑘-

th observation from 𝐴𝑖 the label 𝑥 , where 𝑐
(𝑘,𝑥 )
𝑖

is maximal among
𝑐
(𝑘,𝑗 )
𝑖

. In this way, we have build a vector of new labels, that is the
output of this step.

Step 3. Now we have a dataset, where features are the values of
sensitive attribute and black-box probabilities, while target is the
predicted in the previous step labels. We take a simple classical ML
classifier like decision tree, random forest, k-nearest neighbours
algorithm, etc., (later on interior classifier) and train it on this data.
Thus, we obtain a classifier that predicts “fair” labels based on the
value of the sensitive attribute and the black-box probabilities.

Step 4. We repeat Steps 1–3 𝑛 times and get an ensemble of
classifiers. That is the output of FMCLP algorithm.

Predicting. By the initial classifier, we obtain the black-box
probabilities corresponding to a given observation. Next, each of the
classifiers obtained in Step 4 predicts label of the given observation.

The final prediction is the label, that gets the maximal amount of
votes.

If we want to apply FMCLP algorithm to optimize a different
fairness metric, we need to impose the corresponding condition
instead of cuae-constraint (4). This leads to changes in (6) and,
consequently, to a new linear programming problem. The rest of
FMCLP algorithm remains the same.

5 EXPERIMENTS AND RESULTS
We have tested our approach for 3 classes classification problems
with sensitive attribute taking 2 values over real and synthetic
datasets. In all problems we take as initial classifier Light Gradient
Boosted Machine classifier (later on LGBM classifier, see [17]) be-
cause of its flexibility and usual good performance. For the code
on Python 3 and full record of the results, see [14]. To evaluate our
results, for each dataset, we run the experiment 100 times and com-
puted cuae-metrics of initial and fair classifiers over the test group.
Each table below presents the average values of characteristics of
the corresponding cuae-metric. In all cases, we check statistical
significance of fairness improvement by Wilcoxon-Signed Rank
Test, see [25].

Synthetic datasets. We consider two types of synthetic data:
with andwithout dependence between sensitive attribute and target.
The test results for the cuae-difference, cuae-ratio, cuae-variation
and accuracy are presented in Table 1.

Table 1: Synthetic dataset with / no dependence between
sensitive attribute and target

Difference Ratio Variation Accuracy
with no with no with no with no

Unfair 0.079 0.046 1.105 1.061 0.182 0.171 0.837 0.836
Fair 0.07 0.048 1.109 1.065 0.177 0.176 0.837 0.835
Impr. 11.1 % -5.1 % 1.2 % -0.4 % 2.7 % -2.9 % -0.02 % 0.1 %

For the dataset with dependence between a binary sensitive
attribute and target we observe a small increase in fairness with
a negligible loss in accuracy. Secondly, we evaluate behaviour of
FMCLP algorithm when target and sensitive attribute are statisti-
cally independent. We observe a small decrease in fairness with
statistically insignificant increase in accuracy. Indeed, since the
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sensitive attribute does not depend on the target, it is natural to
observe a small decrease in fairness; meanwhile, FMCLP algorithm
does not reduce accuracy in this case. This example shows that
FMCLP algorithm does not collapses if applied to a data without
dependence between sensitive attribute and target variable.

Real datasets. Based on the data provided by LSAC (see [1]),
it is possible to model the problem of multiclass classification of
law school students according to their GPA category, determined
by their numerical GPA score. One may consider three categories
instead of the binary classification "high—low", since high scores
affect the further development of a student’s career (e.g., they will
be taken into account when applying for a job), and at the same
time, middle scores also allow developing a career, unlike low scores.
The task is to predict the category that a 3rd year student will fall
into based on several appropriate features. We choose sensitive
attributes to be gender and race, and test non-white people and
non-white women on discrimination. Here we observe a decent
improvement of all parameters in cuae-metric. This example shows
that FMCLP algorithm can improve fairness for protected group
combined of different sensitive attributes.

Table 2: LSAC dataset for non-white people (All) and non-
white women (W)

Difference Ratio Variation Accuracy
All W All W All W All W

Unfair 0.219 0.225 1.347 1.369 0.285 0.306 0.840 0.842
Fair 0.164 0.177 1.230 1.258 0.196 0.195 0.827 0.831
Impr. 25.1 % 21.3 % 8.7 % 8.1 % 31.2% 36.3% -1.6 % -1.3%

Our next example is a credit scoring dataset LOAN (see [14]). The
target variable here is the score of the client: bad, middle or good,
while sensitive attribute is one of the parameters in dataset. The
implementation of FMCLP algorithm here strongly decreases cuae-
difference, cuae-ratio and cuae-variation, while accuracy change
is insignificant. This behaviour is consistent during all 100 experi-
ments. Resuming, FMCLP algorithm has a decent performance over
this dataset.

Table 3: LOAN and COMPAS datasets

LOAN COMPAS
Diff. Ratio Variat. Acc. Diff. Ratio Variat. Acc.

Unfair 0.561 2.972 0.711 0.937 0.145 1.354 0.571 0.833
Fair 0.435 1.88 0.499 0.937 0.146 1.323 0.503 0.826
Impr. 22.4 % 36.7% 29.7 % -0.02 % -0.6 % 2.3 % 13.5 % -0.8 %

Our last example is one of the COMPAS datasets (see [14]). Here
the sensitive attribute is race (white or black) and the target is
the potential possibility to recidivism (low, medium, or high). The
results of testing on the COMPAS dataset are presented in the table
3. We see significant decrease in cuae-variation with small changes
in cuae-difference, cuae-ratio and accuracy.

For all real datasets we estimate the percentage of people from
sensitive groups who are unfairly assigned by the original classi-
fier to the lower group that they actually performed, see Figure 2.

Figure 2: The dispersion of the discrimination percentage for
LGBM (unfair) and FMCLP (fair) algorithms on different real
datasets.

We see, that implementation of FMCLP algorithm reduces these
numbers in all datasets and hence may have positive impact on the
quality of life of individuals with certain sensitive parameters.

We have tested a relatively similar approach based on linear
programming from [21] for all our real datasets. For each dataset
we run the experiment 10 times using LGBM classifier as initial
classifier and evaluated performance over test part of the data. The
comparison of the results is presented in the Table 4.

Table 4: Comparison with other approach (1 - algorithm
from [21], 2 - FMCLP)

COMPAS LOAN LSAC LSAC G
1 2 1 2 1 2 1 2

Diff. 0.079 0.146 0.763 0.435 0.161 0.164 0.160 0.177
Ratio 1.185 1.323 1.478 1.88 1.372 1.230 1.385 1.258
Variat. 0.769 0.503 0.906 0.499 0.388 0.196 0.400 0.195
Accur. 0.729 0.826 0.764 0.937 0.659 0.827 0.659 0.831

Unfair Acc. 0.833 0.937 0.840 0.842

As we see from the results, our approach is significantly better in
terms of drops in accuracy over all datasets. We have a quite similar
performance over LSAC and LSAC-gender datasets in terms of fair-
ness, while for LOAN dataset we have slightly better performance
in cuae-metric. For COMPAS dataset algorithm from [21] better
improves cuae-difference and cuae-ratio, but the loss in accuracy is
significant.

Resuming, in all trials FMCLP has a small or statistically insignif-
icant loss in accuracy, while fairness metric is typically improved.
Moreover, for all real datasets we decreased a number of individuals
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that are assigned to the lower group that they deserve, that may
have an application to some social real world problems.

6 DISCUSSION
An advantage of the FMCLP algorithm is its general applicability,
i.e., it requires just the black-box probabilities and access to the
protected groups. Thus, one can implement our approach to various
classification problems without any restrictions on type of initial
classifier, number of labels etc. Depending on a problem, FMCLP
algorithm can be used to optimize different fairness metrics, like
demographic parity, equalized odds, etc. To achieve this, we need
to change the corresponding constraint in the linear programming
problem in Step 2. Also, if an initial classifier returns the labels
instead of the black-box probabilities, we can still use the FMCLP
algorithm, considering the output as probabilities (0,0,. . . ,1,. . . ,0),
where 1 corresponds to the predicted label. We suppose, that it
makes sense to implement FMCLP algorithm in problems with
at least three classes. For binary classification, there are several
efficient algorithms, see, e.g., Fairlearn package [5].

As our experiments show, the loss in accuracy after implementa-
tion of FMCLP algorithm is usually small and often is statistically
negligent, while fairness is improved.

7 CONCLUSION
In this paper, we introduced FMCLP algorithm for reducing the
discrimination in multi-class classification problems and evaluated
its performance on real and synthetic datasets. In Section 5 we
see, that FMCLP algorithm improves fairness metric conditional
use accuracy equality without significant loss in accuracy over
three real and one synthetic datasets. Moreover, for all real datasets
we observed that FMCLP algorithm decreases amount of people
assigned by the initial classifier to the lower group that they belong
to.

The framework presented in our paper can be applied very
broadly. Indeed, FMCLP algorithm needs as input just black-box
probabilities and values of sensitive attributes and, due to its lin-
ear program structure, can optimize various fairness metrics. We
suppose that good performance of our approach over datasets in
Section 5 may warrant FMCLP algorithm to be a subject of further
investigation.
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APPENDIX
In this section, we give some details on FMCLP algorithm workflow.

Time limitations. For the training time of FMCLP algorithm
we have

𝑇 ≈ 𝑛 ∗ (𝑡𝑙𝑝 (𝑠) + 𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠)),
where 𝑡𝑙𝑝 (𝑠) is the time of solving a linear programming problem
on a sample of size 𝑠 , 𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠) is the training time of the interior
classifier on the sample of size 𝑠 and 𝑛 is the number of iterations
in Step 4. For large 𝑠 typically 𝑡𝑙𝑝 (𝑠) ≫ 𝑡𝑡𝑟𝑎𝑖𝑛 (𝑠) and hence 𝑇 is
approximately 𝑛 ∗ 𝑡𝑙𝑝 (𝑠). The prediction time for each observation
is approximately 𝑛 ∗ 𝑡𝑝𝑟𝑒𝑑 , where 𝑡𝑝𝑟𝑒𝑑 is the prediction time for
one interior classifier.

Parameter tuning. The first parameter to choose is the interior
classifier. Baseline is “random forest” classifier, but it is possible
to use different algorithms as logistic regression, random trees,
support vector machines, k-nearest neighbours algorithm, etc. The
main demand for the interior classifier is its operation time: algo-
rithms like neural networks consume a lot of time for training and
this will result in low speed of FMCLP algorithm. The second param-
eter to adjust is 𝑠 , the size of a sample in Step 1, which affects both
speed and quality. Large 𝑠 (comparable to number of observations
in the initial dataset) may make the linear programming problem
computationally complex and time-consuming; small values of 𝑠
typically do not provide a good performance. As we observed from
experiments on our datasets, usually medium size of 𝑠 is an optimal
choice. On datasets from Section 5, we took 𝑠 ∈ [20

√
𝑁, 45

√
𝑁 ],

where 𝑁 is a number of observations in the initial dataset. If the
number of classes is greater than 3, we suppose that one should

choose the biggest 𝑠 such that the linear program can be solved re-
garding computational resources. The last parameter to customize
is 𝑛, a number of iterations in Step 4. The increase of this parameter
linearly increases training and predicting time, but the results are
become a little more robust. A typical good choice of this parameter
is between 10 and 30. Smaller values may lead to high variance
and inconsistency of the results, while bigger values just increases
operation time without significant improvement of the result.

Non-optimal initial classifier case. Here, we show perfor-
mance of FMCLP algorithm for non-optimal initial classifier choice.
We train Gaussian Naive Bayesian classifier over COMPAS and
LSAC datasets and then apply FMCLP algorithm. The results are
presented in Table 5:

Table 5: LOAN and COMPAS datasets for non-optimal initial
classifier

COMPAS LSAC
Diff. Ratio Variat. Acc. Diff. Ratio Variat. Acc.

Unfair 0.285 2.193 0.859 0.514 0.442 2.699 0.743 0.453
Fair 0.269 2.328 0.0.876 0.456 0.374 3.757 0.808 0.419
Impr. 5.6 % -6.2% -2.0 % -12.7 % 15.4 % -39.2 % -8.7 % -8.1 %

We see that FMCLP algorithm still improves cuae-difference, but
cuae-ratio is increased and accuracy is decreased. We think, that
such behaviour of FMCLP algorithm can be due to the low accuracy
of the initial classifier. Indeed, low accuracy of the initial classifier
implies low reliability of black-box probabilities and hence FMCLP
algorithm may show this performance.
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