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ABSTRACT
When considering machine learning tasks aimed at bidirectional
training, it is common practice to employ the source corpus as the
target corpus, requiring the training of two models with opposing
directions. The prompt question of which model demonstrates su-
perior adaptability to domain shifts holds substantial significance
across various disciplines. Specifically, we examine the case wherein
an original distribution 𝒑 undergoes transformations resulting from
an unknown intervention, leading to the emergence of a modified
distribution 𝒑∗. Multiple factors, such as causal dependencies among
variables within 𝒑, influence the rate of adaptation when aligning
𝒑 with 𝒑∗. Nevertheless, real-life scenarios necessitate the consid-
eration of fairness during the training process, particularly when
incorporating a sensitive variable (bias) situated between a cause and
an effect variable. To investigate this scenario, we scrutinize a sim-
plified structural causal model (SCM) featuring a cause-bias-effect
structure, wherein variable A functions as a sensitive intermedi-
ary between the cause and the effect. The two models demonstrate
consistent and contradictory cause-effect directions within the cause-
bias-effect SCM, respectively. By subjecting variables within the
SCM to unknown interventions, we can simulate various domain
shifts to facilitate analysis. Consequently, we compare the adapta-
tion speeds of the two models across four shift scenarios while also
establishing the connection between their adaptation speeds across
all interventions.
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Figure 1: An example of fairness learning. The causal graph
illustrates Chinese as the cause and Japanese as the effect, as
Japanese developed from Chinese, with polysemy serving as the
sensitive variable (bias) between the two.

1 INTRODUCTION
AI systems can be used in many sensitive environments to make
important and life-changing decisions; thus, it is crucial to ensure
that these decisions do not reflect discriminatory behavior toward
certain groups or populations [5]. A sensitive feature is defined as
an attribute that contains protected information about individuals or
groups within a dataset. Machine learning models have the potential
to inadvertently acquire discriminatory patterns if sensitive variables
exhibit spurious correlations with the target variable or predictive
outcomes. Consequently, this can lead to biased decisions or unfair
predictions that disproportionately impact specific individuals or
groups. Therefore, it is crucial to ensure that these decisions do
not reflect discriminatory behavior towards particular groups or
populations [5].

Let’s consider a common situation. When translating Chinese to
Japanese, the impact of polysemous words cannot be overlooked.
Polysemous words, or words with multiple meanings, can lead to am-
biguity in translation, especially when the target language has differ-
ent meanings for the same word. Such ambiguity can be particularly
problematic when the polysemous word serves as a sensitive vari-
able in fairness learning, where the translation may have unintended
consequences on the fairness of the resulting model. Therefore, it is
crucial to carefully consider the impact of polysemous words when
translating between languages, especially when such words serve as
sensitive variables in fairness learning (Fig 1). Furthermore, modern
machine learning methods encounter surprising failures when the
test distribution differs from the training distribution, which is com-
monly known as domain shift. Although many domain adaptation [7]
and domain generalization [8] methods have been proposed in recent
years to mitigate the problem of domain shift, in reality, we often
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need to achieve the best possible results and for the convenience of
training, we still need to retrain the data in the new domain. In the
process of relearning from the original distribution to the new distri-
bution, the relative speed of adaptation between the causal model and
the anti-causal model may differ. Considering this SCM (𝑋 → 𝑌 ),
the previous work [4] analyzed the adaptation speed of two models
trained in the direction of the causal dependency (i.e., from X to
Y) and in the reverse direction of the causal dependency (i.e., from
Y to X) concerning domain shift. While they have obtained some
promising findings, the analysis of adaptation speed did not take
into account fairness considerations (i.e., sensitive variables), which
are crucial in real-life scenarios. There are currently theoretical and
experimental gaps in the analysis of this aspect, which is precisely
what our work aims to address.

Now let us provide a more formal definition. As shown in Fig 1,
the three variables (bias: A, cause: X, effect: Y) related to fairness
can form a cause-bias-effect structural causal model (𝐴 → 𝑋 and
𝐴,𝑋 → 𝑌 ). We consider two training models with sensitive vari-
ables (bias): one that has the consistent cause-effect direction of the
cause-bias-effect SCM (i.e., causal model), and the other that has the
opposite direction(i.e., anti-causal model). Domain shift can be de-
scribed as the transition from the initial joint distribution 𝒑(𝐴,𝑋,𝑌 )
in the training set to the joint distribution 𝒑∗ (𝐴,𝑋,𝑌 ). We establish
different distribution shift to explain the relationship between the
adaptation speed of the two models in situations. In conclusion, our
contributions can be summarized as follows:

• In summary, our work provides a significant contribution to
the understanding of the adaptation speed of causal models in
scenarios involving sensitive variables. The common types of
domain shift can be categorized into covariate shift and con-
cept shift. However, when considering fairness factors, there
can also be a drift in the distribution of sensitive variables. As
demonstrated in the appendix, when the distribution of sen-
sitive variables drifts without altering the relative adaptation
speed caused by other variable shifts, we focus only on the
scenario where the distributions of cause and bias variables
change simultaneously. We considered domain shift caused
by four types of interventions on the data distribution, includ-
ing interventions on bias, cause, interventions on both bias
and cause, and interventions on effect. And we conducted
theoretical analyses for each of the four cases.
• We analyze the relationship between the adaptation speed

of two different causal models and provide insights into this
topic, using synthetic real data. Our work is the first of its
kind and offers valuable information on this topic.

2 PRELIMINARY
2.1 Interventions on SCMs
Structural causal models (SCMs) are widely used in causal inference
to model the causal relationships among variables. An SCM consists
of a directed acyclic graph (DAG) and a set of structural equations
that define the causal relationships among the variables in the graph
[6]. Interventions on SCMs involve changing the value of a variable
to a specified value. This can be represented mathematically using
the do-operator, denoted by do(𝑋 = 𝑥). The do-operator separates
the effect of an intervention from the effect of other variables in the

system. For example, if we want to investigate the effect of drug
treatment on a disease outcome, we might use the do-operator to set
the value of the treatment variable to "treated" and observe the effect
on the outcome variable. In the following narrative, we will use 𝒑∗

to represent this modified distribution, such as

𝒑∗ (𝑎, 𝑥,𝑦) = 𝒑(𝑎, 𝑥,𝑦 |do(𝑥 = 𝑡)) . (1)

By controlling one or several variables in this way, we simulate
domain shifts under different scenarios. And 𝒑∗ is the outcome after
domain shifts.

2.2 Reference and Transfer Distributions
We obtain the initial reference distribution 𝒑 by sampling the triad
(𝐴,𝑋,𝑌 ) from a structural causal model (SCM) constructed as fol-
lows: 𝐴 is a bias, 𝑋 is the cause, and 𝑌 is the effect. The SCM is
defined by the following two equations:

𝐴→ 𝑋, (2)

𝐴,𝑋 → 𝑌 . (3)

If the intervention is on the bias, we sample 𝐴 from a different
marginal distribution, while 𝑋 and 𝑌 are sampled from the reference
conditional distribution:

𝒑∗ (𝑎, 𝑥,𝑦) = 𝒑∗ (𝑎)𝒑(𝑥 |𝑎)𝒑(𝑦 |𝑎, 𝑥) . (4)

If the intervention is on the cause, 𝐴 is sampled from the refer-
ence marginal distribution, 𝑋 is sampled from a different marginal
distribution independently of 𝐴, and 𝑌 is sampled from the reference
conditional distribution:

𝒑∗ (𝑎, 𝑥,𝑦) = 𝒑(𝑎)𝒑∗ (𝑥)𝒑(𝑦 |𝑎, 𝑥) . (5)

If the intervention is on both the bias and the cause, 𝐴 is sampled
from a different marginal distribution, 𝑋 is sampled from a different
marginal distribution independently of 𝐴, and 𝑌 is sampled from the
reference conditional distribution:

𝒑∗ (𝑎, 𝑥,𝑦) = 𝒑∗ (𝑎)𝒑∗ (𝑥)𝒑(𝑦 |𝑎, 𝑥). (6)

If the intervention is on the effect,𝐴 is sampled from the reference
marginal distribution, 𝑋 is sampled from the reference conditional
distribution, and 𝑌 is sampled from a different marginal distribution
independently of 𝐴 and 𝑋 :

𝒑∗ (𝑎, 𝑥,𝑦) = 𝒑(𝑎)𝒑(𝑥 |𝑎)𝒑∗ (𝑦) . (7)

Thus, we obtain all the transfer joint distributions that arise from
interventions on some of the variables.

2.3 Fairness-aware Models for Training
The models mentioned in this section, which are distinct from the
SCM and are used for training, are referred to as causal models
and anti-causal models, respectively. The causal model and the anti-
causal model are constructed with the variables (A,X,Y). The causal
model can be described as

𝒑𝜃→ (𝑎, 𝑥,𝑦) = 𝒑𝜃𝐴 (𝑎)𝒑𝜃𝑋 |𝐴 (𝑥 |𝑎)𝒑𝜃𝑌 |𝐴,𝑋
(𝑦 |𝑎, 𝑥) . (8)

Meanwhile, the anti-causal model can be described as

𝒑𝜃← (𝑎, 𝑥,𝑦) = 𝒑𝜃𝐴 (𝑎)𝒑𝜃𝑌 |𝐴 (𝑦 |𝑎)𝒑𝜃𝑋 |𝐴,𝑌
(𝑥 |𝑎,𝑦), (9)

where the 𝜃→ and 𝜃← represent parameters of the two models re-
spectively (e.g. 𝜃→ includes 𝜃𝐴, 𝜃𝑋 |𝐴, and 𝜃𝑌 |𝐴,𝑋 ).
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2.4 Model Adaptation
This section explains the most fundamental issue of this work. As-
suming the initial distribution of two models is both p, and due to
certain factors, the distribution drifts to 𝑝∗, the training process is
to make the models approach the distribution 𝑝∗. When the training
is about to start, the training term is 𝑇 := 0. The two models will be
initialized to fit the same reference distribution p like

𝒑
𝜃
(0)
→

= 𝒑
𝜃
(0)
←

= 𝒑. (10)

Then we get samples from the transfer distribution 𝑝∗. Letting these
samples join the training process, the log-likelihood will gradually
increase in every step of stochastic gradient descent (SGD). The
distribution 𝒑𝜃 adapts to 𝑝∗ closest until we get the minimal log-
likelihood loss. Taking the causal model for example, the loss is

Lcausal (𝜃→) =E(𝐴,𝑋,𝑌 )∼𝒑∗
[
− log𝒑𝜃→ (𝐴,𝑋,𝑌 )

]
=E𝒑∗

[
− log𝒑𝜃𝐴 (𝐴)

]
+ E𝒑∗

[
− log𝒑𝜃𝐴|𝑋 (𝐴|𝑋 )

]
+E𝒑∗

[
− log𝒑𝜃𝑌 |𝐴,𝑋

(𝑌 |𝐴,𝑋 )
]
, (11)

where the log-likelihood suboptimality is equal to the KL-divergence

L(𝜃 ) − L(𝜃∗) = 𝐷KL (𝒑∗ | |𝒑𝜃 ). (12)

2.5 Parameters in Trainable Models
We assume that the bias 𝐴, the cause 𝑋 , and the effect 𝑌 in the
two models are multiclass variables with 𝐾 classes. The natural
parameter 𝜽 ∈ R𝐾 is generated from the distribution 𝑝 by the inverse
function of the softmax function

𝑝𝑧 =
𝑒𝑠𝑧∑
𝑧′ 𝑒

𝑠𝑧′
. (13)

We set 𝒔 as the trainable parameter in SGD. Taking causal model
for example, the model has parameters 𝒔𝐴 := (𝑠𝑎)𝑎=1...𝐾 , 𝒔𝑋 |𝐴 :=
(𝑠𝑥 |𝑎)𝑎,𝑥=1...𝐾 and 𝒔𝑌 |𝐴,𝑋 := (𝑠𝑦 |𝑎,𝑥 )𝑎,𝑥,𝑦=1...𝐾 . The parameters of
causal model can be represented as 𝜃→ = (𝒔𝐴, 𝒔𝑋 |𝐴, 𝒔𝑌 |𝐴,𝑋 ), while
that’s 𝜃← = (𝒔𝐴, 𝒔𝑌 |𝐴, 𝒔𝑋 |𝐴,𝑌 ) in anti-causal model. Using the pa-
rameter 𝒔, the loss (11) can be written as

Lcausal (𝜃→) = E(𝐴,𝑋,𝑌 )∼𝒑∗
[
− log𝒑𝜃→ (𝐴,𝑋,𝑌 )

]
= E𝒑∗ [−𝑠𝐴 + log

∑︁
𝑎

𝑒𝑠𝑎 − 𝑠𝑋 |𝐴 + log
∑︁
𝑥

𝑒𝑠𝑥 |𝐴

− 𝑠𝑌 |𝐴,𝑋 + log
∑︁
𝑦

𝑒𝑠𝑦 |𝐴,𝑋 ] . (14)

3 SPEED ANALYSIS
In this section, we will discuss the parameters involved in the training
process and present our findings on the comparative speed of the
causal and anti-causal models.

3.1 Distance Inequality
Based on Average Stochastic Gradient Descent (ASGD) [2], the pre-
vious work [4] proves that the average parameter’s 𝜃 (𝑇 ) = 1

𝑇

∑𝑇−1
𝑡=0 𝜃

(𝑡 )

suboptimality is upper bounded by

E
[
𝐷KL (𝒑∗ | |𝒑𝜃 (𝑇 ) )

]
≤ 𝑐
−1∥𝜃 (0) − 𝜃∗∥2 + 𝑐𝐵2

2
√
𝑇

, (15)

where 𝑐 is a small enough constant. This inequality indicates that
the upper bound of the convergence is mainly determined by the
distance △ := ∥𝜃 (0) − 𝜃∗∥2 between the reference distribution and
the transfer distribution. Specifically, the initial distance of the causal
model and the anti-causal model is respectively denoted by △causal =

∥𝜃 (0)→ −𝜃∗→∥2 and △anticausal = ∥𝜃
(0)
← −𝜃∗←∥2. And the two distances

are the core basis of the subsequent discussion.

3.2 Adaptation Speeds of Two Models
Furthermore, comparing the convergence speed of two models can
be equivalently expressed as comparing the magnitudes of △causal =

∥𝜃 (0)→ − 𝜃∗→∥2 and △anticausal = ∥𝜃 (0)← − 𝜃∗←∥2, the model with a
smaller initial distance (△) has a faster convergence speed.

Intervention on bias A, 𝒔𝐴← 𝒔∗
𝐴

. In this scenario, both the causal
and anti-causal models modify only the same sensitive marginal 𝒔𝐴.
The initial distance between the two models can be expressed as

△causal = △anticausal = ∥𝒔𝐴 − 𝒔∗𝐴∥
2, (16)

which implies that the two models converge simultaneously.
Intervention on cause X, ∀𝑎, 𝒔𝑋 |𝑎← 𝒔∗

𝑋
. The conditional 𝒔𝑌 |𝐴,𝑋

remains unchanged while 𝒔𝑌 |𝐴 and 𝒔𝑋 |𝐴,𝑌 of anti-causl model are
modified.The initial distance can be written as

△causal =
∑︁
𝑎

∥𝒔𝑋 |𝑎 − 𝒔∗𝑋 ∥
2, (17)

△anticausal =
∑︁
𝑎

∥𝒔𝑌 |𝑎 − 𝒔∗𝑌 |𝑎 ∥
2 +

∑︁
𝑎

∑︁
𝑦

∥𝒔𝑋 |𝑎,𝑦 − 𝒔∗𝑋 |𝑎,𝑦 ∥
2 .

(18)

We can compare the initial distances of the two models based on the
aforementioned distance and arrive at the following proposition.

PROPOSITION 1. When the intervention is on the cause,

△anticausal ≥ 𝐾△causal , (19)

where the specific proof process will be explained in Appendix.

Intervention on both bias A and cause X, 𝒔𝐴← 𝒔∗
𝐴

and
∀𝑎, 𝒔𝑋 |𝑎← 𝒔∗

𝑋
. Compared to the case of intervening on cause X, the

intervention on bias A introduces an additional equal distance to the
initial distance of the two models. Hence, we can obtain a similar
result as before and derive the following inequality:

△anticausal ≥ △causal , (20)

which will be simply explained in Appendix.It can be observed that
in all three scenarios, the initial distance of the causal model is
consistently smaller than that of the anti-causal model, indicating
that the causal model adapts to the domain more quickly. However,
if the domain shift is induced by interventions on the effect variable
(Y), interestingly, different conclusions can be drawn.

Intervention on effect Y, ∀𝑎, 𝑥, 𝒔𝑌 |𝑎,𝑥← 𝒔∗
𝑌

. The marginal 𝒔𝐴
and the conditional 𝒔𝑋 |𝑎 remain unchanged under this intervention.
On the other hand, the conditional 𝒔𝑌 |𝐴 and 𝒔𝑌 |𝐴,𝑋 in the anti-causal
model change with respect to effect Y. The initial distances for the
two models can be expressed as:

△causal = ∥𝒔𝑌 − 𝒔∗𝑌 |𝐴,𝑋 ∥
2, (21)

△anticausal =
∑︁
𝑎

∥𝒔𝑌 |𝑎 − 𝒔∗𝑌 ∥
2 +

∑︁
𝑎

∑︁
𝑦

∥𝒔𝑋 |𝑎,𝑦 − 𝒔∗𝑋 |𝑎,𝑦 ∥
2, (22)
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Table 1: Results on synthetic data. The scatter plots in the first column demonstrate the positive correlation between the KL-divergence
after one-quarter of the training steps, while the second column shows the correlation after three-quarters of the training steps. Each
point on the scatter plots represents a pair (𝑝 (0) , 𝑝∗) in the causal model (blue) or the anti-causal model (red). The curve in the third
column shows the relative speeds of the two models. The shaded area indicates the 5th and 95th percentiles of the KL-divergence. The
value of 𝐾𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 is set to 20 in this experiment.

where the distance above does not maintain a constant relationship
compared to the other three situations.

PROPOSITION 2. When the intervention is on the effect, there
will be two situations. If the following inequality:

∥𝒔∗𝑌 − 𝒄 ∥
2 < 𝑅2 (23)

is satisfied, then △anticausal ≥ △causal (proved in Appendix). Let us
illustrate this inequality ( 23), where 𝑅2 (see Appendix for specific
formula) is a constant related with 𝒔𝑋 , 𝒔𝑌 |𝐴, 𝒔𝑋 |𝐴,𝑌 and 𝒔𝑌 |𝐴,𝑋 ,

and 𝒄 =
(∑𝑥 𝒔𝑌 |𝐴,𝑥 )−𝒔𝑌 |𝐴

𝐾−1 .

The inequality (23) implies that the causal model has a compar-
ative advantage only within a certain range, where the modified
marginal 𝒔𝑌 is sufficiently close to 𝒄. However, if the distance goes
beyond this range, the anti-causal model will converge faster.

4 EXPERIMENTS
4.1 Data
In this section, we evaluate the criterion of adaptation speed using
a synthetic dataset. The first we need is to get the distributions
𝒑 = 𝒑𝜽 (0) which is called prior. Specifically, we get 𝒑𝐴, 𝒑𝑋 |𝐴 and
𝒑𝑌 |𝐴,𝑋 from the Dirichlet distribution. The three distributions can
be represented as:

𝒑𝐴 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (1𝐾 ),
∀𝑎,𝒑𝑋 |𝑎 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (1𝐾 ),

∀𝑎, 𝑥,𝒑𝑌 |𝑎,𝑥 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (1𝐾 ),
where 1𝐾 is the all-one vector of K-dimension. Such a prior has been
previously adopted by the work [1]. And distributions sampled from
this prior exhibit some asymmetry between X and Y [3]. We can
say that by using the aforementioned distributions, we ensure that
these three distributions are mutually independent. Now we have
thus obtained an initial joint distribution.

4.2 Results
This section demonstrates the adaptation speed of the causal and anti-
causal models using the data from section 4.1, as well as the positive

relationship between the KL divergence and the initial parameter
distance. Using 𝐾𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 20, the results for the three datasets
are presented in Table.1 to demonstrate the adaptation speed of the
causal and anti-causal models. Additionally, scatter plots are used to
depict the positive correlation between the KL divergence and the
initial parameter distance during the training process. The results
after one-quarter and three-quarters of the training steps are shown.

Intervention on bias A. When intervening on the bias A, both
the causal and anti-causal models undergo the same change with
respect to the bias, while holding other variables constant. Therefore,
both models exhibit overlapping points on the scatter plots, resulting
in the initial distance 𝛿causal = 𝛿anticausal and coinciding curves in
the third column. As a result, the convergence speed of both models
is the same. This is in line with the observation that interventions
on biases do not change the causal structure of the model, and thus
do not provide any new information that can be used to distinguish
between the two models.

Intervention on cause X. In the case of an intervention on the
cause X, the causal model has an advantage over the anti-causal
model, as the points of the causal model cluster towards the bottom
left as compared to the points of the anti-causal model. This relative
positioning reflects the formula 𝛿causal < 𝛿anticausal, which is derived
in our previous work. This advantage of the causal model is most
pronounced in four intervention scenarios, where the causal model
exhibits a significant advantage in terms of the curves.

Intervention on both bias A and cause X. When intervening on
both the bias and the cause, the relative positions of points in the
causal and anti-causal models maintain their relative positions, with
the anti-causal model being on the upper right of the causal model
as a whole. However, the difference in adaptation speed between the
two models shrinks, as the two curves have a short overlap in the
early training steps. This result is somewhat counterintuitive, as one
might expect that intervening on both the bias and the cause would
provide more information that could be used to distinguish between
the two models. However, our results suggest that this is not always
the case, and that the advantage of the causal model may depend on
the specific structure of the model.
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Intervention on effect Y. When intervening on the effect Y, the
relative positions of points in the causal and anti-causal models are
reversed, with the points of the anti-causal model being concentrated
in the lower-left corner. This advantage of the anti-causal model
corresponds to the proposition that the anti-causal model is better
suited to handle interventions on effect variables. Although the anti-
causal model may not always have this advantage, it typically retains
it in most cases. The curves also reflect this result, as the anti-causal
model consistently converges faster when using the three datasets.
Our results suggest that interventions on effect variables provide
valuable information that can be used to distinguish between the
causal and anti-causal models.

5 CONCLUSION
We investigate the adaptation speed of both causal and anti-causal
models in the presence of bias and build upon a theory that explains
the relationship between the initial distance of parameters and the
adaptation speed. Furthermore, it’s a challenge to extend our analysis
to models with more complex structural differences, such as those
with varying numbers of variables and edges. To analyze the adap-
tation speed in such cases, an indicator to measure the difference

between the models is necessary. However, finding an appropriate
indicator can be challenging to analyze in the future.
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