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ABSTRACT
Recently, there has been a growing interest in developing machine

learning (ML) models that can promote fairness, i.e., eliminating

biased predictions towards certain populations (e.g., individuals

from a specific demographic group). Most existing works learn such

models based on well-designed fairness constraints in optimization.

Nevertheless, in many practical ML tasks, only very few labeled

data samples can be collected, which can lead to inferior fairness

performance. This is because existing fairness constraints are de-

signed to restrict the prediction disparity among different sensitive

groups, but with few samples, it becomes difficult to accurately

measure the disparity, thus rendering ineffective fairness optimiza-

tion. In this paper, we define the fairness-aware learning task with

limited training samples as the fair few-shot learning problem. To

deal with this problem, we devise a novel framework that accumu-

lates fairness-aware knowledge across different meta-training tasks

and then generalizes the learned knowledge to meta-test tasks.

To compensate for insufficient training samples, we propose an

essential strategy to select and leverage an auxiliary set for each
meta-test task. These auxiliary sets contain several labeled train-

ing samples that can enhance the model performance regarding

fairness in meta-test tasks, thereby allowing for the transfer of

learned useful fairness-oriented knowledge to meta-test tasks. Fur-

thermore, we conduct extensive experiments on three real-world

datasets to validate the superiority of our framework against the

state-of-the-art baselines.
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1 INTRODUCTION
Machine learning (ML) tools have been increasingly utilized in

high-stake tasks such as credit assessments [26] and crime predic-

tions [22]. Despite their success, the data-driven nature of existing

machine learning methods makes them easily inherit the biases
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buried in the training data and thus results in predictions with

discrimination against some sensitive groups [33]. Here, sensitive

groups are typically defined by certain sensitive attributes such

as race and gender [3, 4, 19, 35, 45]. For example, a criminal risk

assessment model can unfavorably assign a higher crime probabil-

ity for specific racial groups [33]. In fact, such undesirable biases

commonly exist in various real-world applications such as toxi-

city detection [6], recommendation systems [21], loan approval

predictions [29], and recruitment [11].

In response, a surge of research efforts in both academia and

industry have been made for developing fair machine learning

models [7, 9]. These models have demonstrated their ability to ef-

fectively mitigate unwanted bias in various applications [1, 47].

Many fair ML methods [8, 10] incorporate fairness constraints to

penalize predictions with statistical discrepancies among different

sensitive groups. These methods often rely on sufficient training

data from each sensitive group (e.g., collecting data from a specific

region with an imbalanced population composition [49]). However,

in many scenarios, only very few data samples can be collected,

especially for those from the minority group. This could render

existing fairMLmethods ineffective or even further amplify discrim-

ination against the minority group. To enhance the applicability

of fair ML in practice [49], this work aims to address the crucial

and urgent problem of fair few-shot learning: promoting fairness in

few-shot learning tasks with a limited number of samples.

One feasible solution to address fair few-shot learning is to in-

corporate fairness techniques into few-shot learning methods. Par-

ticularly, we first learn frommeta-training tasks with adequate sam-

ples [18, 32, 39], and then leverage the learned knowledge and fine-

tune the model on other disjoint meta-test tasks with few samples

based on fairness constraints. We define such a step of fine-tuning

as fairness adaptation. However, there still remain two primary

challenges for our problem. First, the insufficiency of samples in

meta-test tasks can result in unsatisfactory fairness adaptation per-

formance. Although the model can adapt to meta-test tasks with

limited samples via fine-tuning for classification, these samples

may not be sufficient to ensure fairness performance. Many fair-

ness constraints are designed to restrict the prediction disparity

among different sensitive groups. However, in fair few-shot learn-

ing, the lack of samples in each sensitive group inevitably increases

the difficulties in measuring the prediction disparity. Moreover, in

meta-test sets, the sensitive attributes of data samples can often

be extremely imbalanced (e.g., a majority of individuals belonging

to the same race, while other sensitive groups have very few, or

even no samples). In these cases, the conventional fairness con-

straints are often ineffective, or completely inapplicable. Second,
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the generalization gap between meta-training tasks and meta-test

tasks hinders the efficacy of fairness adaptation. Similar to other

few-shot learning studies, the key point of fair few-shot learning is

to leverage the learned knowledge from meta-training tasks to fa-

cilitate the model performance on meta-test tasks with few samples.

In our problem, it is essential to leverage the learned knowledge for

fairness adaptation. However, models that manage to reduce dis-

parities on meta-training tasks do not necessarily achieve the same

performance in fairness on meta-test tasks [10], due to the fact that

fairness constraints are data-dependent and thus lack generalizabil-

ity [8]. As a result, it remains challenging to extract and leverage

the learned knowledge that is beneficial for fairness adaptation.

To tackle these challenges, we devise a novel framework for

fair few-shot learning, named FEAST (Fair fEw-shot learning with

Auxiliary SeTs). Specifically, we propose to leverage an auxiliary
set for each meta-test task to promote fair adaptation with few sam-

ples while addressing the issues caused by insufficient samples. The

auxiliary set is comprised of several samples from meta-training

data and is specific to each meta-test task. By incorporating these

auxiliary sets via a novel fairness-aware mutual information loss, the
model can be effectively adapted to a meta-task with few samples

while preserving the fairness knowledge learned during training.

Furthermore, to effectively leverage the learned knowledge from

meta-training tasks for fairness adaptation, our framework selects

the auxiliary sets based on the fairness adaptation direction. This
ensures that the selected auxiliary sets share similar fairness adap-

tation directions and thus can provide beneficial learned knowledge.

We summarize our main contributions as follows:

• Problem. We study the crucial problem of fair few-shot

learning. We introduce the importance of it, analyze the

challenges, and point out the limitations of existing studies.

To the best of our knowledge, this is the first work that

addresses these unique challenges in fair few-shot learning.

• Method.We develop a novel fair few-shot learning frame-

work that (1) can leverage auxiliary sets to aid fairness

adaptation with limited samples, and (2) can select auxil-

iary sets with similar optimization directions to promote

fairness adaptation.

• Experiments. We conduct extensive experiments on three

real-world fairness datasets under the few-shot scenario and

demonstrate the superiority of our proposed framework in

terms of fairness compared to state-of-the-art baselines.

2 PROBLEM STATEMENT
In this section, we provide a formal definition for the problem of

fair few-shot learning that we study in this paper. Denote Z =

X × Y as the input space, where X ⊂ R𝑛 is the input space with

𝑛 different features and Y = {1, 2, . . . , 𝑁 } is the label space with
𝑁 discrete classes. We consider inputs 𝑋 ∈ X, labels 𝑌 ∈ Y, and
sensitive attribute 𝐴 ∈ {0, 1}. In the few-shot setting, the dataset

D is comprised of two different smaller datasets: meta-training

data D𝑡𝑟 and meta-test data D𝑡𝑒 . Moreover, D = D𝑡𝑟 ∪ D𝑡𝑒 and
D𝑡𝑟 ∩ D𝑡𝑒 = ∅, i.e., |D𝑡𝑟 | + |D𝑡𝑒 | = |D|. In general, few-shot

settings assume that there exist sufficient samples in D𝑡𝑟 , while
samples in D𝑡𝑒 are generally scarce [18, 34].

The proposed framework is built upon the prevalent paradigm

of episodic meta-learning [32, 34], which has demonstrated supe-

rior performance in the field of few-shot learning [18, 39]. The

process of episodic meta-learning consists of meta-training on

D𝑡𝑟 and meta-test on D𝑡𝑒 . During meta-training, the model is

trained on a series of meta-training tasks {T1,T2, . . . ,T𝑇 }, where
each meta-training task contains support set S as the reference

and a query set Q to be classified.𝑇 is the number of meta-training

tasks. More specifically,S = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑁×𝐾 , 𝑦𝑁×𝐾 )}
contains 𝑁 classes and 𝐾 samples for each of these 𝑁 classes

(i.e., the 𝑁 -way 𝐾-shot setting). Meanwhile, the query set Q =

{(𝑥𝑞
1
, 𝑦
𝑞

1
), (𝑥𝑞

2
, 𝑦
𝑞

2
), . . . , (𝑥𝑞| Q | , 𝑦

𝑞

| Q | )} consists of |Q| different sam-

ples to be classified from these 𝑁 classes. Subsequently, our goal is

to develop a machine learning model that can accurately and fairly

predict labels for samples inD𝑡𝑒 with limited labeled samples after

training on D𝑡𝑟 . Formally, the studied problem of fair few-shot

learning can be formulated as follows.

Definition 1. Fair few-shot learning: Given meta-training
data D𝑡𝑟 and a meta-test task T = {S,Q} sampled from meta-test
data D𝑡𝑒 , our goal is to develop a fair learning model such that after
meta-training on samples inD𝑡𝑟 , the model can accurately and fairly
predict labels for samples in the query set Q when the only available
reference is the limited samples in the support set S.

It is noteworthy that the support sets and the query sets are sam-

pled from meta-training data D𝑡𝑟 . That is, for any sample (𝑥𝑖 , 𝑦𝑖 )
in a meta-training task, (𝑥𝑖 , 𝑦𝑖 ) ∼ 𝑃𝑡𝑟 (𝑋,𝑌 ), where 𝑃𝑡𝑟 (𝑋,𝑌 ) is the
meta-training task distribution from meta-training data D𝑡𝑟 . We

then evaluate the model on a series of meta-test tasks, which share

the same structure as meta-training tasks, except that the samples

are now from meta-test data D𝑡𝑒 . In other words, for any sam-

ple (𝑥𝑖 , 𝑦𝑖 ) during meta-test, we have (𝑥𝑖 , 𝑦𝑖 ) ∼ 𝑃𝑡𝑒 (𝑋,𝑌 ), where
𝑃𝑡𝑒 (𝑋,𝑌 ) is the meta-test task distribution from meta-test dataD𝑡𝑒 .
Under the meta-learning framework [18, 20, 51], the model needs to

be first fine-tuned for several steps (i.e., fairness adaptation) using

the support set, and then performs fair classification for samples in

the query set.

3 PROPOSED FRAMEWORK
We formulate the problem of fair few-shot learning in the 𝑁 -way 𝐾-

shot meta-learning framework. The meta-training process typically

involves a series of randomly sampled meta-training tasks, each of

which contains 𝐾 samples for each of the 𝑁 classes as the support

set, along with several query samples to be classified. Under the

few-shot scenario, it is challenging to conduct fairness adaptation

on the support set due to the insufficiency of samples and the

generalization gap between meta-training tasks and meta-test tasks.

Therefore, as illustrated in Fig. 1, we propose the use of auxiliary

sets that can enhance fairness adaptation for each meta-test task. In

this section, we first introduce the process of conducting fairness

adaptation with auxiliary sets and then discuss the strategy to select

auxiliary sets.

3.1 Fairness Adaptation with Auxiliary Sets
To alleviate the issue of ineffective fairness adaptation to meta-test

tasks caused by insufficient samples, we propose to leverage the
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Figure 1: The overall process of our proposed framework FEAST. Here different shapes denote different sensitive attributes, and
colors represent sample classes. Given a meta-task, the generator will output the estimated fairness adaptation direction, which
is used to select an auxiliary set with the most similar direction from the candidate set. Then we conduct fairness adaptation
with the auxiliary set on the current meta-task and perform predictions. The resulting fairness adaptation will be used to
update the generator. Note that during training, the meta-task will be incorporated into the candidate auxiliary sets after the
optimization of one episode.

samples in meta-training tasks for fairness adaptation. Specifically,

considering a target meta-test task T = (S,Q), our goal is to
utilize an auxiliary set A obtained from meta-training data that

can compensate for inadequate samples in S. However, due to the

distribution difference between meta-training tasks and meta-test

tasks, it remains non-trivial to leverage the auxiliary set A, which

follows a different distribution from S. Since the data distribution
inA differs from that in S, directly conducting fairness adaptation

on A can be ineffective for fairness in S. Therefore, to enhance

fairness adaptation with the help of the auxiliary setA, we propose

to maximize the mutual information (MI) between the support set

S and the auxiliary set A. In consequence, the fairness adaptation

on S will benefit from A.

Generally, the support set S in T can be expressed as S =

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑁×𝐾 , 𝑦𝑁×𝐾 )}, which contains 𝐾 samples

for each of 𝑁 classes. 𝑥𝑖 is an input sample, and 𝑦𝑖 is the corre-

sponding label. We use 𝑎𝑖 ∈ {0, 1} to denote its sensitive attribute.

In particular, we propose to construct an auxiliary set that shares

the same structure as the support set. In this way, the auxiliary set

A can be represented as A = {(𝑥∗
1
, 𝑦∗

1
), (𝑥∗

2
, 𝑦∗

2
), . . . , (𝑥∗|A | , 𝑦

∗
|A | )}.

Here |A|, i.e., the size of the auxiliary set, is set as a controllable

hyper-parameter. Moreover, based on the classification model 𝑓 (·),
we can obtain the sample embedding x𝑖 ∈ R𝑑 , and the classification
probabilities p𝑖 = 𝑓 (𝑥𝑖 ) ∈ R𝑁 for 𝑥𝑖 . Here 𝑑 denotes the embedding

dimension of samples, and 𝑁 is the number of classes in T . We

maximize the fairness-aware MI between S and A:

max

𝜃
𝐼 (S;A) = max

𝜃

|S |∑︁
𝑖=1

|A |∑︁
𝑗=1

𝑝 (𝑥𝑖 , 𝑥∗𝑗 ;𝜃 ) log
𝑝 (𝑥𝑖 |𝑥∗𝑗 ;𝜃 )
𝑝 (𝑥𝑖 ;𝜃 )

, (1)

where 𝜃 denotes the parameters of classification model 𝑓 (·). Since
the MI term 𝐼 (S;A) is difficult to obtain and also intractable, it

is infeasible to directly maximize it [27]. Therefore, we first re-

formulate the MI term to make it computationally tractable based

on the property of conditional probabilities:

𝐼 (S;A) =
|S |∑︁
𝑖=1

|A |∑︁
𝑗=1

𝑝 (𝑥𝑖 |𝑥∗𝑗 ;𝜃 )𝑝 (𝑥
∗
𝑗 ;𝜃 ) log

𝑝 (𝑥𝑖 |𝑥∗𝑗 ;𝜃 )
𝑝 (𝑥𝑖 ;𝜃 )

=

|S |∑︁
𝑖=1

|A |∑︁
𝑗=1

𝑝 (𝑥∗𝑗 |𝑥𝑖 ;𝜃 )𝑝 (𝑥𝑖 ;𝜃 ) log
𝑝 (𝑥𝑖 |𝑥∗𝑗 ;𝜃 )
𝑝 (𝑥𝑖 ;𝜃 )

.

(2)

Since the support set S is randomly sampled, we can assume that

the prior probability 𝑝 (𝑥𝑖 ;𝜃 ) follows a uniform distribution and

set it as a constant: 𝑝 (𝑥𝑖 ;𝜃 ) = 1/|S|, which thus can be ignored

in optimization. Therefore, it remains to estimate 𝑝 (𝑥𝑖 |𝑥∗𝑗 ;𝜃 ) and
𝑝 (𝑥∗

𝑗
|𝑥𝑖 ;𝜃 ) to obtain the value of 𝐼 (S;A).

3.1.1 Estimation of 𝑝 (𝑥𝑖 |𝑥∗𝑗 ;𝜃 ). We first denote S0 and S1 as the
sets of samples with sensitive attributes of 0 and 1, respectively

1
. In

other words, S = S0∪S1 and S0∩S1 = ∅. Similarly, we define sets

A0 and A1 for the auxiliary set A. Then we propose to estimate

𝑝 (𝑥𝑖 |𝑥∗𝑗 ;𝜃 ) as follows:

𝑝 (𝑥𝑖 |𝑥∗𝑗 ;𝜃 ) =


p𝑖 (𝑦∗𝑗 )∑

𝑥𝑘 ∈S𝑎𝑖 p𝑘 (𝑦
∗
𝑗
) if 𝑎𝑖 = 𝑎

∗
𝑗 ,

0 else.

(3)

Here p𝑖 (𝑦∗𝑗 ) ∈ R denotes the classification probability of 𝑥𝑖 regard-

ing 𝑦∗
𝑗
, which is the label of 𝑥∗

𝑗
. Intuitively, the probability measures

the alignment of the classification between the support sample 𝑥𝑖
and the auxiliary sample 𝑥∗

𝑗
, which (1) shares the same sensitive

attribute with 𝑥𝑖 and (2) is also similar to 𝑥𝑖 regarding the classifica-

tion output. In other words, maximizing 𝑝 (𝑥𝑖 |𝑥∗𝑗 ;𝜃 ) can increase the
fairness adaptation consistency between sample 𝑥𝑖 and auxiliary

samples that are specifically beneficial for the fairness adaptation

with 𝑥𝑖 , thus promoting the fairness adaptation performance.

1
For the sake of simplicity, we focus on tasks with only binary sensitive attributes in

this paper. Nevertheless, our work can be easily generalized to tasks with multiple

types of sensitive attributes.
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3.1.2 Estimation of 𝑝 (𝑥∗
𝑗
|𝑥𝑖 ;𝜃 ). The term 𝑝 (𝑥∗

𝑗
|𝑥𝑖 ;𝜃 ) in Eq. (2) is

conditioned on 𝑥𝑖 and denotes the probability of 𝑥∗
𝑗
inferred by

𝑥𝑖 . Moreover, since the value of 𝑝 (𝑥𝑖 |𝑥∗𝑗 ;𝜃 ) becomes zero when

the sensitive attributes of 𝑥𝑖 and 𝑥
∗
𝑗
are different, we only need

to estimate 𝑝 (𝑥∗
𝑗
|𝑥𝑖 ;𝜃 ) when 𝑥𝑖 and 𝑥∗𝑗 share the same sensitive

attributes, i.e., 𝑎𝑖 = 𝑎
∗
𝑗
. Therefore, since 𝑥𝑖 and 𝑥

∗
𝑗
maintain the same

sensitive attributes, we can estimate the probability 𝑝 (𝑥∗
𝑗
|𝑥𝑖 ;𝜃 )

based on the squared Euclidean distance between their embeddings

without explicitly considering their fairness-aware correlation. In

particular, we further normalize the probability with a softmax

function to formulate term 𝑝 (𝑥∗
𝑗
|𝑥𝑖 ;𝜃 ) as follows:

𝑝 (𝑥∗𝑗 |𝑥𝑖 ;𝜃 ) =
exp

(
−∥x𝑖 − x∗𝑗 ∥

2

2

)
∑
𝑥∗
𝑘
∈A𝑎∗

𝑗

exp

(
−∥x𝑖 − x∗𝑘 ∥

2

2

) . (4)

Furthermore, to ensure the consistency of sample representations

in meta-training and meta-test data, we apply the ℓ2 normalization

on both x𝑖 and x∗
𝑗
, which results in ∥x𝑖 − x∗𝑗 ∥

2

2
= 2 − 2x⊤

𝑖
· x∗
𝑗
. In

this manner, the logarithmic term log𝑝 (𝑥∗
𝑗
|𝑥𝑖 ;𝜃 ) becomes:

log

(
𝑝 (𝑥∗𝑗 |𝑥𝑖 ;𝜃 )

)
= log

©­­«
exp

(
−2 + 2x⊤

𝑖
· x∗
𝑗

)
∑
𝑥∗
𝑘
∈A𝑎∗

𝑗

exp

(
−2 + 2x⊤

𝑖
· x∗
𝑘

) ª®®¬
= 2x⊤𝑖 · x

∗
𝑗 − log

∑︁
𝑥∗
𝑘
∈A𝑎∗

𝑗

exp

(
2x⊤𝑖 · x

∗
𝑘

)
.

(5)

Finally, the MI loss L𝑀𝐼 can be derived as follows:

L𝑀𝐼 =
1

|A|

|A |∑︁
𝑗=1

∑︁
𝑥𝑖 ∈S𝑎∗

𝑗

−
p𝑖 (𝑦∗𝑗 )∑

𝑥𝑘 ∈S𝑎𝑖 p𝑘 (𝑦
∗
𝑗
)

(
2x⊤𝑖 · x

∗
𝑗

− log
∑︁

𝑥∗
𝑘
∈A𝑎∗

𝑗

exp

(
2x⊤𝑖 · x

∗
𝑘

))
.

(6)

The overall fairness adaptation loss can be represented as the com-

bination of fairness regularization terms on the support set S and

the auxiliary set A along with the MI loss between S and A:

L𝐹𝐴 = L𝑅 (S) + 𝛾 (L𝑅 (A) + L𝑀𝐼 ) , (7)

where 𝛾 is an adjustable weight hyper-parameter to control the

importance of the auxiliary set. Specifically, L𝑅 denotes the regu-

larized optimization loss:

L𝑅 (𝑆) =
1

|S|
∑︁
(𝑥,𝑦) ∈S

ℓ (𝑓 (𝑥), 𝑦) + 𝜆𝑅(S), (8)

where ℓ is the classification loss, and 𝑅(S) denotes the fairness

regularization term.

3.2 Auxiliary Sets Selection
The second problem of the generalization gap betweenmeta-training

and meta-test in fair few-shot learning can also pose a significant

challenge in fairness adaptation. To address this issue, we propose to

select the auxiliary set based on its similarity in fairness adaptation

directions to the target meta-test task. In this way, incorporating

the auxiliary set with a similar fairness adaptation direction can

potentially leverage beneficial learned knowledge in meta-training

to enhance fairness adaptation in the target meta-task. However,

it is difficult to identify the fairness adaptation direction of the

auxiliary set that aligns with the target meta-task. It is possible

that the auxiliary set holds a different or even opposite fairness

adaptation direction from the target meta-task. As such, the in-

corporation of such an auxiliary set can even harm the fairness

adaptation performance. Therefore, to select the auxiliary set with a

similar fairness adaptation direction to the target meta-test task, we

introduce a dynamic dictionary, A𝑐𝑎𝑛 , which stores all candidate

auxiliary sets for selection, with the keys being their corresponding

fairness adaptation directions. This allows us to efficiently identify

and select an auxiliary set with a similar adaptation direction for

the target meta-test task, thereby improving the fairness adaptation

performance in the presence of the generalization gap.

Notably, this dictionary will be dynamically updated by adding

a new auxiliary set after each meta-training step and meanwhile

removing the oldest auxiliary set, of which the fairness adaptation

direction is the most outdated. In this manner, the dictionary also

acts like a queue, which means that the size can be flexible and

independent to fit various scenarios. Specifically, after each step on

a meta-training task T = {S,Q}, we will enqueue the support set
S as a candidate auxiliary set

2
into A𝑐𝑎𝑛 and remove the oldest

auxiliary set. The key of enqueued S, which is the fairness adapta-

tion direction of S, is set as the gradient of L𝑅 (S), i.e., ∇𝜃L𝑅 (S),
where 𝜃 denotes the model parameters of 𝑓 (·).
Identifying the true fairness adaptation direction.With the

help of the dynamic dictionary as a queue during meta-training, it

may still remain difficult to obtain the fairness adaptation direction

of the target meta-test task T . This is because the fairness adapta-
tion direction of S cannot faithfully reveal the true direction due to

potentially imbalanced sensitive attributes. Therefore, to identify

the true fairness adaptation direction without directly conducting

fairness adaptation on the support set S, we propose the use of a
generator 𝑔(·), parameterized by 𝜙 , to estimate the fairness adapta-

tion results for each meta-test task. In particular, the generator 𝑔(·)
takes the support set S as input and outputs an estimation of the

gradient of L𝑅 (S), i.e., ∇𝜃L𝑅 (S). To optimize the generator 𝑔(·),
we introduce the Mean Squared Error (MSE) loss as the objective

function as follows:

L𝐸 = ∥𝑔(S) − ∇𝜃L𝑅 (S)∥22 , (9)

where 𝑔(S) ∈ R𝑑𝜃 is the generator output, and 𝑑𝜃 is the size of

the classification model parameter 𝜃 . It is worth mentioning that

the input of the generator 𝑔(·) is an entire support set S, which
means that the generator should be able to capture the contextual

information within the support set. For this reason, we propose

to leverage the transformer encoder architecture [38] followed by

a Multiple Layer Perceptron (MLP) as the implementation of the

generator. In specific, the output of the generator can be expressed

as follows:

𝑔(S) = MLP

(
Mean

(
Transformer

(
x1, x2, . . . , x |S |

)))
. (10)

2
Note that the auxiliary set size is controllable via randomly removing samples in S
or incorporating new samples before enqueuing.
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Algorithm 1 Detailed training process of our framework.

Input: Meta-training task distribution 𝑃𝑡𝑟 from the meta-training

data D𝑡𝑟 , number of meta-training tasks 𝑇 , number of fine-

tuning steps 𝜏 .

Output: A trained fairness-aware classification model 𝑓 (·) and a

generator model 𝑔(·).
1: Randomly initialize the dictionary queue A𝑐𝑎𝑛 ;
2: for 𝑖 = 1, 2, . . . ,𝑇 do
3: Sample a meta-training task T𝑖 = {S,Q} ∼ 𝑃𝑡𝑟 ;
4: Obtain the fairness adaptation direction via Eq. (10);

5: Select an auxiliary set A from the candidate auxiliary set

dictionary A𝑐𝑎𝑛 based on Eq. (11);

6: for 𝑡 = 1, 2, . . . , 𝜏 do
7: Conduct one step of fairness adaptation according to Eq.

(7) and Eq. (12);

8: end for
9: Meta-optimize classification model 𝑓 (·) and generator 𝑔(·)

based on Eq. (13) and Eq. (14), respectively;

10: Enqueue support set S into the dictionary queue A𝑐𝑎𝑛 and

remove the oldest candidate auxiliary set in A𝑐𝑎𝑛 ;
11: end for

In this manner, the generator can estimate the corresponding fair-

ness adaptation direction from S, where the result can be used for

selecting an auxiliary set.

After the meta-training process on a series of meta-training tasks

{T1,T2, . . . ,T𝑇 }, we can obtain a dictionary of candidate auxiliary

sets in A𝑐𝑎𝑛 = {A1,A2, . . . ,A |A𝑐𝑎𝑛 | } along with their fairness

adaptation directions as keys. Here we denote their corresponding

keys as k(A) ∈ R𝑑𝜃 . Then given a new meta-test task Ttest =

{Stest,Qtest}, the corresponding selected auxiliary set A∗ can be

selected via the following criterion:

A∗ = argmin

A∈A𝑐𝑎𝑛

dist (𝑔(Stest), k(A)) , (11)

where dist(·, ·) is a function to measure the distance between two

vectors. In the experimentation, we implement it as the Euclidean

distance. We can then efficiently select an auxiliary set from a

significantly large dictionary based on the keys. Note that to keep

consistency between meta-training and meta-test, we will also

select an auxiliary set for each meta-training task for optimization.

3.3 Meta-optimization
Our framework is optimized under the episodic meta-learning par-

adigm [18]. Specifically, let 𝜃 denote the total parameters of the

classification model 𝑓 (·). In order to perform fairness adaptation,

we first initialize the model parameters as 𝜃0 ← 𝜃 . After that, given

a specific meta-task T = {S,Q}, we conduct 𝜏 steps of gradient
descent based on the fairness adaptation loss L𝐹𝐴 calculated on

the support set S. Thus, the fairness adaptation process in T can

be formulated as follows:

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼∇𝜃𝑡−1L𝐹𝐴 (S;𝜃𝑡−1) , (12)

where 𝑡 ∈ {1, 2, . . . , 𝜏} and L(S;𝜃𝑡−1) denotes the loss calculated
based on the support setSwith the parameters𝜃𝑡−1. 𝜏 is the number

of fine-tuning steps applied, and 𝛼 is the learning rate in each fine-

tuning step. After conducting 𝜏 steps of fine-tuning, we will meta-

optimize the classification model 𝑓 (·) with the loss calculated on

the query setQ. In specific, wemeta-optimize the model parameters

𝜃 with the following update function:

𝜃 =: 𝜃 − 𝛽1∇𝜃L𝐹𝐴 (Q;𝜃𝜏 ), (13)

where 𝛽1 is the meta-learning rate for the classification model 𝑓 (·).
For the optimization of the generator 𝑔(·), parameterized by 𝜙 ,

the update can be formulated as follows:

𝜙 =: 𝜙 − 𝛽2∇𝜙L𝐸 (S;𝜃𝜏 ), (14)

where L𝐸 is the MSE loss introduced in Eq. (9), and 𝛽2 is the meta-

learning rate for the generator 𝑔(·). In this way, the model parame-

ters 𝜙 of 𝑔(·) will be updated based on loss L𝐸 after the fairness

adaptation of the classification model 𝑓 (·). The detailed training

process of our framework is demonstrated in Algorithm 1.

4 EXPERIMENTAL EVALUATIONS
4.1 Datasets
In this subsection, we introduce the datasets used in our exper-

iments. To evaluate the performance of FEAST on fair few-shot

learning, we conduct experiments on three prevalent real-world

datasets: Adult [15], Crime [22], and Bank [26]. The detailed dataset

statistics are provided in Table 1.

• Dataset Adult contains information from 48,842 individuals

from the 1994 US Census, where each instance is represented

by 14 features and a binary label. Here the label indicates

whether the income of a person is higher than 50K dollars.

Following the data split setting in PDFM [49], we split the

dataset into 34 subsets based on the country information of

instances. We consider gender as the sensitive attribute.

• The Crime dataset includes information on 2,216 commu-

nities from different states in the U.S., where each instance

consists of 98 features. Following [31], the binary label of

each instance is obtained by converting the continuous crime

rate based on whether the crime rate of a community is in the

top 50% within the state. The sensitive attribute is whether

African-Americans are among the highest or second highest

populations in each community. We further split this dataset

into 46 subsets by considering each state as a subset.

• Dataset Bank consists of 41,188 individual instances. Specifi-

cally, each instance maintains 20 features along with a binary

label that indicates whether the individual has subscribed

to a term deposit. Here, we consider marital status as the

binary sensitive attribute. Moreover, the dataset is split into

50 subsets based on the specific date records of instances.

4.2 Experimental Settings
To achieve a fair comparison of FEAST with competitive baselines,

we conduct experiments with the state-of-the-art fair few-shot

learning methods and other few-shot learning methods with fair-

ness constraints. The details are provided below.
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Table 1: Statistics of three real-world datasets.

Dataset Adult Crime Bank

Sensitive Attribute Gender Race Marital Status

Label Income Crime Rate Deposit

# Instances 48,482 2,216 41,188

# Features 12 98 17

# Subsets 34 46 50

# Training Subsets 22 30 40

# Validation Subsets 6 8 5

# Test Subsets 6 8 5

• MAML [18]: This method utilizes a classic meta-learning

framework to deal with the fair few-shot learning problem

without explicitly applying fairness constraints.

• M-MAML [18]: This method uses the same framework as

MAML while modifying datasets by removing the sensitive

attribute of each instance to enhance fairness during opti-

mization.

• Pretrain [49]: This method learns a single model on all meta-

training data without episodic training. Moreover, a fairness

constraint is added to the training objective.

• F-MAML [50]: This method applies a fairness constraint in

each episode and tunes a Lagrangianmultiplier shared across

different episodes for fair few-shot learning tasks.

• FM-dp and FM-eop (Fair-MAML) [31]: These baselines pro-

vide a regularization for each episode based on demographic

parity (DP) and equal opportunity (EOP), respectively.

• PDFM [49]: This method leverages a primal-dual subgradi-

ent approach to ensure that the learned model can be fast

adapted to a new episode in fair few-shot learning.

Particularly, we use the average classification accuracy (ACC) over

𝑇test meta-test tasks to evaluate the prediction performance. For

fairness performance, we propose to utilize demographic parity

(DP) and equalized odds (EO), which are commonly used in existing

works [8, 16, 44, 48]. Since we consider the binary classification

datasets, the output 𝑓 (𝑥) ∈ R denotes the prediction score of a

specific sample 𝑥 . In this manner, the metrics can be calculated over

𝑇test meta-test tasks sampled from the meta-test task distribution

𝑃𝑡𝑒 as follows:

ΔDP = ET∼𝑃𝑡𝑒

������ 1

|Q0 |
∑︁
𝑥∈Q0

𝑓 (𝑥) − 1

|Q1 |
∑︁
𝑥∈Q1

𝑓 (𝑥)

������ , (15)

ΔEO = ET∼𝑃𝑡𝑒
∑︁

𝑦∈{0,1}

������� 1

|Q𝑦
0
|

∑︁
𝑥∈Q𝑦

0

𝑓 (𝑥) − 1

|Q𝑦
1
|

∑︁
𝑥∈Q𝑦

1

𝑓 (𝑥)

������� , (16)
where Q0 and Q1 denote the query samples with a sensitive at-

tribute of 0 and 1, respectively. Similarly, Q𝑦
0
(or Q𝑦

1
) denotes the

query samples in Q0 (or Q1) with label 𝑦. 𝑃𝑡𝑒 is the meta-test

task distribution of meta-test sets D𝑛 . Our code is released at

https://github.com/SongW-SW/FEAST.
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Figure 2: Ablation study on our framework FEAST on three
datasets under the 5-shot setting.

4.3 Performance Comparison
Table 2 presents the fairness and prediction performance compar-

ison of FEAST and all other baselines on fair few-shot learning.

Specifically, we report the results of ΔDP, ΔEO, and classification

accuracy over 500 meta-test tasks for 10 repetitions. We conduct

experiments on both 5-shot and 10-shot settings (i.e., 𝐾 = 5 and

𝐾 = 10). From Table 2, we can have following observations:

• Our framework FEAST consistently outperforms other base-

lines in terms of fairness in all datasets under both 5-shot

and 10-shot settings. These results provide compelling evi-

dence for the effectiveness of our framework FEAST in fair

few-shot learning.

• The performance improvement of FEAST over other base-

lines is more significant on the Crime dataset. This is due to

that in this dataset, each subset consists of fewer samples.

Consequently, the learned fairness-aware meta-knowledge

will be more difficult to be transferred in baselines. Never-

theless, our proposed fairness adaptation strategy based on

mutual information can effectively deal with this scenario.

• The accuracy of FEAST is comparable with other baselines,

demonstrating that FEAST can substantially reduce biases

without sacrificing its classification capability. This is be-

cause our framework FEAST can select the auxiliary set

with similar fairness adaptation directions and thus will not

harm model performance regarding accuracy.

• FEAST is more robust to the changes of the number of sup-

port samples per class, i.e., when the number decreases from

10 to 5, FEAST has the least performance drop in comparison

to other baselines. We believe this is primarily because, with

fewer support samples, the problem of insufficient samples

becomes more significant. Nevertheless, FEAST can effec-

tively address this issue with the incorporation of auxiliary

sets into fairness adaptation.

4.4 Impact of Each Component in FEAST
In this subsection, we conduct an ablation study on three datasets

under the 5-shot setting to evaluate the effectiveness of different

components in our framework by comparing FEAST with three

degenerate versions: (1) FEAST without fairness adaptation based

on MI, referred to as FEAST\F. In this variant, the fairness adap-

tation process is simplified such that only fairness constraints are

applied. (2) FEAST without auxiliary set selection, i.e., the auxiliary

https://github.com/SongW-SW/FEAST
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Table 2: Results w.r.t. fairness and prediction performance of FEAST and baselines under different settings for all three datasets.

Dataset Adult Crime Bank

Setting 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Metric ΔDP ΔEO ACC ΔDP ΔEO ACC ΔDP ΔEO ACC ΔDP ΔEO ACC ΔDP ΔEO ACC ΔDP ΔEO ACC

MAML 0.473 0.706 0.801 0.409 0.584 0.886 0.558 0.952 0.718 0.443 0.832 0.792 0.214 0.573 0.603 0.185 0.496 0.619

M-MAML 0.447 0.689 0.826 0.381 0.555 0.857 0.359 0.732 0.711 0.300 0.569 0.757 0.214 0.544 0.600 0.175 0.459 0.619

F-MAML 0.339 0.432 0.825 0.310 0.353 0.840 0.503 0.871 0.719 0.463 0.707 0.762 0.207 0.585 0.575 0.181 0.528 0.650

FM-dp 0.313 0.502 0.814 0.241 0.438 0.844 0.385 0.722 0.741 0.329 0.604 0.771 0.238 0.614 0.586 0.187 0.553 0.604

FM-eop 0.430 0.703 0.812 0.370 0.601 0.846 0.352 0.706 0.739 0.311 0.591 0.804 0.289 0.683 0.581 0.245 0.600 0.640

Pretrain 0.365 0.513 0.806 0.310 0.450 0.885 0.390 0.692 0.746 0.354 0.582 0.776 0.248 0.659 0.594 0.208 0.539 0.642

PDFM 0.261 0.461 0.815 0.276 0.401 0.869 0.402 0.784 0.722 0.325 0.669 0.816 0.210 0.585 0.589 0.180 0.493 0.645

FEAST 0.258 0.355 0.820 0.235 0.256 0.861 0.203 0.309 0.739 0.164 0.217 0.797 0.190 0.524 0.583 0.154 0.414 0.641
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Figure 3: Results of FEAST on Adult (left) and Crime (right)
with different values of 𝛾 .

set is randomly sampled. We refer to this variant as FEAST\A. (3)

FEAST without both fairness adaptation and auxiliary set selec-

tion, referred to as FEAST\FA. The results, as presented in Fig. 2,

show that FEAST outperforms all other variants, validating the

importance of both fairness adaptation and auxiliary set selection

components in fair few-shot learning. Of particular interest is that

the removal of the MI fairness adaptation has a more significant

adverse impact on the Crime dataset, which contains significantly

fewer meta-training samples. This result highlights the crucial role

of this component in addressing the issue of insufficient training

samples. In addition, when the two components are both removed,

the fairness performance drops greatly. Such results indicate that

the mutual impact brought by these two components is also critical

for our proposed framework FEAST.

4.5 Effect of Loss Weight 𝛾
Given the significance of the auxiliary sets in the fairness adap-

tation, in this subsection, we further examine in-depth how the

auxiliary sets will influence the performance of FEAST. Specifi-

cally, we vary the value of 𝛾 , which controls the importance of

the auxiliary set loss during fairness adaptation. A higher value

of 𝛾 implies a larger importance weight on the auxiliary set and a

smaller importance weight on the target task. Due to the limitation

of space, we evaluate the model’s performance on two datasets,

Adult and Crime, using various values of 𝛾 (similar results on the

Bank dataset) on the 5-shot setting. The results, as shown in Fig. 3,

indicate that a value around 0.5 for 𝛾 generally yields better fairness

performance for both datasets. This is mainly because a small 𝛾 can

be insufficient to leverage the fairness-aware meta-knowledge in

auxiliary sets, while an excessively large value of 𝛾 can result in the

loss of crucial fairness information in the target meta-task. More-

over, the effect of different 𝛾 values is more significant on the Adult

dataset. The reason is that this dataset contains a larger number

of samples in meta-training data. As a result, the learned fairness-

aware knowledge is richer in the auxiliary sets, thus propagating

the benefits from auxiliary sets.

4.6 Effect of Auxiliary Set Size
In this section, we conduct experiments to evaluate the impacts

brought by varying the size of the auxiliary set A. Intuitively, the

auxiliary set size |A| should be at least comparable with the support

set, since an excessively small auxiliary set can be potentially insuf-

ficient for fairness adaptation. Specifically, we conduct experiments

on dataset Adult under both 5-shot and 10-shot settings to evaluate

the effect of auxiliary set size |A|. From the results presented in

Fig. 4, we can make the following observations: (1) The fairness

results are less satisfactory with a smaller value of |A|, indicating
that the capacity of A can be important in FEAST. With a small

auxiliary set A, the fairness adaptation effect will be reduced due

to insufficient knowledge in A. (2) When further increasing the

size of A, the fairness performance does not accordingly increase.

This demonstrates that knowledge in a larger auxiliary set may not

be helpful for fairness adaptation. (3) When the number of shots

increases from 5 to 10, the best value of |A| also increases, imply-

ing that with a larger support set, the auxiliary set should also be
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Figure 4: Results of FEAST on Adult under 5-shot (left) and
10-shot (right) settings with different values of |A|.

expanded to provide more knowledge for fairness adaptation. In

consequence, the fairness performance can be further improved.

5 RELATEDWORK
5.1 Few-shot Learning
Few-shot learning aims to obtain satisfactory classification perfor-

mance with only a few labeled samples as references [36, 37]. The

typical approach is to accumulate transferable knowledge from

meta-training tasks, which contain abundant labeled samples. Then

such knowledge is generalized to meta-test tasks with limited la-

beled samples. Particularly, existing few-shot learning methods can

be divided into two main categories: (1) Metric-based methods pro-

pose to learn a metric function that matches samples in the query

set with the support samples to conduct classification [23, 34, 41, 42].

For example, Prototypical Networks [32] learn a prototype (i.e., the

average embedding of samples in the same class) for each class and

then classify query samples according to the Euclidean distances be-

tween query samples and each prototype. Matching Networks [39]

output predictions for query samples via the similarity between

query samples and each support sample. (2) Optimization-based
methods aim to first fine-tune model parameters based on gradients

calculated on support samples and then conduct meta-optimization

on each meta-task [25, 28, 40, 43]. As a classic example, MAML [18]

learns a shared model parameter initialization for various meta-

tasks with the proposed meta-optimization strategy. LSTM-based

meta-learner [28] proposes to utilize an adjustable step size to up-

date model parameters.

5.2 Fairness-aware Machine Learning
Various fairness-aware algorithms have been proposed to mitigate

the unwanted bias in machine learning models. Generally, there

are two categories of statistical fairness notions: individual fair-
ness and group fairness. In particular, individual fairness requires

that the model results for similar individuals should also be sim-

ilar [12, 13, 16, 44]. Here, the similarity between individuals can

be measured via specific metrics (e.g., Euclidean distance) learned

during training or from prior knowledge. On the other hand, group

fairness refers to the statistical parity between subgroups (typically

defined by sensitive attributes, e.g., gender and race) via specific

algorithms [14, 19, 24, 46]. Common fairness learning tasks in-

clude fair classification [17, 45], regression [2, 5], and recommenda-

tions [30]. Although these methods have demonstrated satisfactory

performance in mitigating unfairness, it is noteworthy that existing

works mainly focus on the settings where sufficient labeled sam-

ples are provided. As a result, it is challenging for these methods to

accommodate few-shot scenarios with limited labeled samples.

More recently, several methods are proposed to deal with the fair

few-shot learning problem [31, 50]. For example, PDFM [49] utilizes

a primal-dual subgradient approach to ensure fast adaptation to a

novel meta-task. In [48], the authors propose to address fairness

in supervised few-shot meta-learning models that are sensitive

to discrimination in historical data by detecting and controlling

the dependency effect of sensitive attributes on target prediction.

Moreover, F-MAML [50] provides a fairness constraint for each

episode and tunes a Lagrangian multiplier shared across different

episodes based on a meta-learning mechanism. However, these

methods cannot effectively solve the problem of insufficient samples

and the generalization gap.

6 CONCLUSION
In this paper, we propose a novel problem of fair few-shot learning,

which focuses on accurately and fairly predicting labels for samples

in unseen data while using limited labeled samples as references. To

tackle the challenges posed by insufficient samples and the gener-

alization gap between meta-training and meta-test, we propose an

innovative framework FEAST that utilizes learned fairness-aware

meta-knowledge by incorporating auxiliary sets. In particular, our

framework maximizes the mutual information between meta-tasks

and the auxiliary sets to enhance fairness adaptation. Moreover,

we select auxiliary sets based on the estimated fairness adaptation

direction of meta-tasks to improve the fairness performance. We

conduct extensive experiments on three real-world datasets, and

the results validate the superiority of FEAST over the state-of-the-

art baselines. For future work, it is important to consider expanding

the candidate auxiliary set with external knowledge, since samples

in the dataset can be insufficient. In this case, incorporating external

information for fairness adaptation can be crucial.
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