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ABSTRACT
Screening classifiers are increasingly used to identify qualified can-

didates in a variety of selection processes. In this context, it has been

recently shown that, if a classifier is calibrated, one can identify the

smallest set of candidates which contains, in expectation, a desired

number of qualified candidates using a threshold decision rule. This

lends support to focusing on calibration as the only requirement for

screening classifiers. In this paper, we argue that screening policies

that use calibrated classifiers may suffer from an understudied type

of within-group unfairness—they may unfairly treat qualified mem-

bers within demographic groups of interest. Further, we argue that

this type of unfairness can be avoided if classifiers satisfy within-

group monotonicity, a natural monotonicity property within each

of the groups. Then, we introduce an efficient post-processing al-

gorithm based on dynamic programming to minimally modify a

given calibrated classifier so that its probability estimates satisfy

within-group monotonicity. We validate our algorithm using US

Census survey data and show that within-group monotonicity can

be often achieved at a small cost in terms of prediction granularity

and shortlist size.

1 INTRODUCTION
As many selection processes receive thousands of applications, it

has become increasingly common to rely on automated screening

tools to shortlist a tractable set of promising candidates. These

shortlisted candidates then move forward in the selection process

and are evaluated in detail, possibly multiple times, until one or

more qualified candidates are selected.

In the machine learning literature, algorithmic screening has

been studied together with other high-stakes decision making prob-

lems as a supervised learning problem [1]. Under this view, algo-

rithmic screening consists of designing both a screening classifier,

which estimates the probability that a candidate is qualified, and a

screening policy, which shortlists candidates using the candidates’

probability values estimated by the screening classifier. Only very

recently, a line of work has focused specifically on algorithmic

screening [2, 3]. Therein, [2] argue that, to increase the efficiency

of the selection process without decreasing the quality of the short-

listed candidates, the focus should be on screening policies that

find the smallest shortlist of candidates containing a desired aver-

age number of qualified candidates with high probability without

making any distributional assumptions on the candidates. Further,

this work has shown that, if the screening classifier is calibrated [4],

such distribution-free guarantees can be achieved using threshold

decision rules as screening policies and, the more granular the pre-

dictions of the classifier, the smaller the shortlists provided by such

policies.

In this work, our starting point is the realization that any thresh-

old decision rule that uses calibrated screening classifiers may be

biased against qualified candidates within demographic groups of

interest. More specifically, it may shortlist one or more candidates

from a group who are less likely to be qualified than one or more

rejected candidates from the same group. This type of within-group

unfairness may result in precluding the best candidates within each

group—the candidates who are more likely to be qualified—to move

forward in the selection process and have a chance to be selected.

Our contributions.We first show that to avoid such within-group

unfairness, screening classifiers need to satisfy a monotonicity

property within each of the groups of interest, which we refer to

as within-group monotonicity. Then, we develop a set partitioning

post-processing framework to minimally modify any calibrated

classifier such that it satisfies within-group monotonicity. We make

the following contributions:

I. We show that the problem is NP-hard using a reduction

from a variation of the partition problem [5], which we

refer to as the equal average partition problem and prove

it is NP-complete. However, we identify a natural class of

partitions—contiguous partitions—under which the prob-

lem is tractable.

II. We derive a dynamic programming algorithm for contigu-

ous partitions that is guaranteed to find an optimal solution

to our problem in polynomial time.

III. We create a simulated screening process using US Census

survey data to validate and complement our methodological

contributions and theoretical results.

Our results firstly show that the probability that an individual from

a minority group suffers from within-group unfairness may be

significant, which may lead to perpetuating historical biases against

such groups. Secondly, within-group monotonicity can be achieved

at a small cost in terms of prediction granularity and shortlist size.

Appendix A contains a detailed discussion of the related work.

2 SCREENING, CALIBRATION AND
WITHIN-GROUP DISCRIMINATION

Given a candidate with a feature vector 𝑥 ∈ X, we assume the

candidate belongs to one demographic group of interest 𝑧 ∈ Z
and can be qualified (𝑦 = 1) or unqualified (𝑦 = 0) for the selection

objective
1
Next, let 𝑓 : X → Range(𝑓 ) ⊆ [0, 1] be a screening

classifier that maps a candidate’s feature vector 𝑥 ∈ X to a quality

score 𝑓 (𝑥), where the higher the quality score 𝑓 (𝑥), the more the

classifier believes the candidate is qualified. Then, given a pool of

𝑚 candidates, a screening policy 𝜋 : [0, 1]𝑚 → P({0, 1}𝑚) maps

the candidates’ quality scores to a probability distribution over

shortlisting decisions {𝑠𝑖 }𝑖∈[𝑚] . Here, each decision 𝑠𝑖 specifies

whether the corresponding candidate is shortlisted (𝑠𝑖 = 1) or is

not shortlisted (𝑠𝑖 = 0).

1
We do not require a candidate’s group membership 𝑧 to be included in or be inferable from their

feature vector 𝑥 .

1
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In high-stakes applications, screening classifiers 𝑓 are usually

demanded to provide calibrated quality scores [6], i.e., for every
𝑎 ∈ Range(𝑓 ), it should hold that Pr(𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎) = 𝑎. In this

context, [2] have recently shown that, if the classifier 𝑓 is calibrated,

the optimal screening policy 𝜋∗
𝑓
that is guaranteed to shortlist, in

expectation, the smallest set of candidates with a desired number

of qualified candidates with high probability is given by a simple

threshold decision rule that take shortlisting decisions as

𝑠𝑖 =


1 if 𝑓 (𝑥𝑖 ) > 𝑡𝑓 ,

Bernoulli(\ 𝑓 ) if 𝑓 (𝑥𝑖 ) = 𝑡𝑓

0 otherwise,

(1)

where 𝑡𝑓 and \ 𝑓 depend on the classifier and data distribution.

These results suggest focusing on calibration as the only require-

ment for screening classifiers. In this work, we argue that screening

policies given by threshold decision rules using calibrated classi-

fiers may suffer from an understudied type of unfairness—they may

be biased against qualified members within demographic groups.

More formally, the following proposition shows that any thresh-

old decision rule may be biased against qualified members within

demographic groups
2
:

Proposition 2.1. Let 𝜋 be a screening policy given by a threshold
decision rule using a calibrated classifier 𝑓 with threshold 𝑡 . Assume
there exist 𝑎, 𝑏 ∈ Range(𝑓 ), with 𝑎 < 𝑡 < 𝑏, and 𝑧 ∈ Z such that
𝑃 (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎, 𝑍 = 𝑧) > 𝑃 (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑏, 𝑍 = 𝑧). Then, it
holds that

E𝑌∼𝑃𝑌 |𝑋,𝑍 , 𝑆∼𝜋 [𝑌 (1 − 𝑆) | 𝑓 (𝑋 ) = 𝑎, 𝑍 = 𝑧]
> E𝑌∼𝑃𝑌 |𝑋,𝑍 , 𝑆∼𝜋 [𝑌𝑆 | 𝑓 (𝑋 ) = 𝑏, 𝑍 = 𝑧] .

The above result implies that there exist pools of applicants for

which an optimal policy using a calibrated classifier may shortlist

a candidate from a group who is less likely to be qualified than a

rejected candidate from the same group. Importantly, the assump-

tion under which the above within-group unfairness appears is not

just a theoretical construct—it has been observed empirically in

multiple real-world domains whenever the group membership 𝑍 is

a spurious confounding factor that causes both 𝑋 and 𝑌 [7]. The

case in which the assumption holds for every group 𝑧 ∈ Z and any
threshold decision rule is known as Simpson’s paradox [8].

To avoid the above within-group unfairness, we introduce and

study within-group monotonicity:

Definition 2.2. Given a set of groups Z, a classifier 𝑓 is within-
group monotone if, for any 𝑧 ∈ Z and 𝑎, 𝑏 ∈ Range(𝑓 ) such that
𝑎 < 𝑏, Pr(𝑍 = 𝑧 | 𝑓 (𝑋 ) = 𝑎) > 0 and Pr(𝑍 = 𝑧 | 𝑓 (𝑋 ) = 𝑏) > 0, it
holds that

Pr (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎, 𝑍 = 𝑧) ≤ Pr (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑏, 𝑍 = 𝑧) .

In what follows, we will design a post-processing framework

that, given a calibrated classifier, modifies it minimally so that it

is within-group monotone, as shown in Figure 1. As a result, any

screening policy given by a threshold decision rule using the mod-

ified classifier will not suffer from within-group unfairness. We

favor a post-processing approach (rather than an in-processing

2
All proofs can be found in the Appendix D.
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Figure 1: Quality score values 𝑎 = 𝑃 (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎) and
group conditional quality score values 𝑎𝑧 = 𝑃 (𝑌 = 1 | 𝑓 (𝑋 ) =
𝑎, 𝑍 = 𝑧) of a (approximately) calibrated screening classifier
𝑓 with finite range trained on US Census survey data and its
within-group monotone counterpart 𝑓B∗ found by our post-
processing framework. The demographic groups of interest
Z are defined using US citizen status and the hatched bars
indicate within-group monotonicity violations. Note that
there exist no such violations in 𝑓B∗ (second row).

one) mainly because post-processing approaches can be applied to

any black-box classifier without asking for retraining or introduc-

ing training overhead [9]. Furthermore, in-processing approaches

commonly need access to the feature defining group membership

to ensure group-level fairness, which may not be available to the

classifier due to privacy reasons.

3 A SET PARTITIONING POST-PROCESSING
FRAMEWORK

Let 𝑓 be a calibrated classifier with Range(𝑓 ) = {𝑎1, . . . , 𝑎𝑛} and
𝜌𝑖 := Pr (𝑓 (𝑋 ) = 𝑎𝑖 ). Here, note that we focus on calibrated clas-

sifiers with finite range, i.e., |Range(𝑓 )| = 𝑛 < ∞, since it is -

impossible to find non-atomic calibrated classifiers from data ,

even asymptotically [10, 11]. Here, assume that 𝑎𝑖 < 𝑎 𝑗 for any

𝑖 < 𝑗 without loss of generality. Further, for every demographic

group of interest 𝑧 ∈ Z, let 𝑎𝑖,𝑧 := Pr (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎𝑖 , 𝑍 = 𝑧) and
𝜌𝑧 | 𝑖 := Pr (𝑍 = 𝑧 | 𝑓 (𝑋 ) = 𝑎𝑖 ), and note that, by definition, we have
that 𝑎𝑖 =

∑
𝑧∈Z 𝜌𝑧 | 𝑖𝑎𝑖,𝑧 . Then, our goal is to modify 𝑓 minimally

so that it is within-group monotone.

To this end, we note that the classifier 𝑓 induces a partition of X
into 𝑛 disjoint regions or bins {X1, . . . ,X𝑛}, where each bin X𝑖 is

characterized by 𝑎𝑖 and 𝜌𝑖 . Building upon this fact, we look at the

problem from the perspective of set partitioning and seek to merge
a small number of these induced bins to achieve within-group

monotonicity. More formally, let P be the set of all partitions

of the bin indices {1, . . . , 𝑛}. Every B ∈ P is a partition of the

bin indices into a collection of nonempty and disjoint equivalence

classes {A1, . . . ,A | B | }, which we call cells. For each 𝑥 ∈ X, denote

the index of the bin it belongs to as 𝑖 (𝑥) = {𝑖 | 𝑓 (𝑥) = 𝑎𝑖 } and

represent a cell in B containing index 𝑖 (𝑥) by [𝑖 (𝑥)]B , where we
2
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drop the subscript B whenever it is clear from the context. Further,

we know that the equivalence relation ∼B implies that, for all

𝑖 (𝑥 ′) ∈ [𝑖 (𝑥)], we have that 𝑖 (𝑥) ∼B 𝑖 (𝑥 ′). Then, we can use the

partition B to define the modified classifier 𝑓B : X → Range(𝑓B ) =
{𝑎A }A∈B , where

𝑎A :=

∑
𝑗∈A 𝑎 𝑗𝜌 𝑗∑
𝑗∈A 𝜌 𝑗

= and 𝑓B (𝑥) := 𝑎 [𝑖 (𝑥 ) ] .

Without loss of generality, we keep the cells induced by the partition

B in increasing order with respect to 𝑎A , i.e., 𝑎A𝑖
≤ 𝑎A 𝑗

for any

𝑖 < 𝑗 . By definition, 𝑓B is calibrated, i.e.,

Pr (𝑌 = 1 | 𝑓B (𝑋 ) = 𝑎A ) =
∑

𝑗∈A 𝑎 𝑗𝜌 𝑗∑
𝑗∈A 𝜌 𝑗

= 𝑎A ,

and we further define

𝑎A,𝑧 :=

∑
𝑗∈A 𝜌 𝑗𝜌𝑧 | 𝑗𝑎 𝑗,𝑧∑
𝑗∈A 𝜌 𝑗𝜌𝑧 | 𝑗

= Pr (𝑌 = 1 | 𝑓B (𝑋 ) = 𝑎A , 𝑍 = 𝑧) .

Moreover, the larger the partition size |B|, the more fine-grained

the predictions of the classifier 𝑓B [12]. Therefore, we can think

of reducing the problem to finding a partition B of maximum size

such that 𝑓B is within-group monotone , i.e.,

maximize

B∈P
|B| subject to 𝑎A𝑖 ,𝑧 ≤ 𝑎A 𝑗 ,𝑧

∀A𝑖 ,A 𝑗 ∈ B such that 𝑎A𝑖
< 𝑎A 𝑗

,∀𝑧 ∈ Z.

However, such a problem formulation presents difficulties both in

terms of tractability and soundness. First, we cannot expect to find

such a partition in polynomial time:

Theorem 3.1. Given a calibrated classifier 𝑓 , the problem of find-
ing the partition B ∈ P of maximum size such that 𝑓B is within-
group monotone is NP-hard.

To prove the above result in Appendix D.2, we first show that,

by finding the partition B of maximum size such that 𝑓B is within-

group monotone, we can decide whether there exists a partition B′

of size |B′ | = 2 such that 𝑓B′ is within-group monotone. Then, we

show that the latter decision problem is NP-complete by a reduction

from a variation of the partition problem [5], which we refer to as

the equal average partition problem and prove it is NP-complete.

Second, even if the size of the partition B is large, the shortlists

provided by threshold decision rules using 𝑓B may differ greatly

from those using 𝑓 . The reason is that, in general, we may merge

very different bins to ensure monotonicity within groups and, as a

consequence, 𝑓B may rank (pairs of) candidates strictly differently.
More specifically, 𝑓B may not satisfy the following monotonicity

property with respect to 𝑓 :

Definition 3.2. A classifier 𝑓 ′ is monotone with respect to 𝑓 if,
for all 𝑓 (𝑥1), 𝑓 (𝑥2) ∈ Range(𝑓 ) such that 𝑓 (𝑥1) < 𝑓 (𝑥2), it holds
that 𝑓 ′ (𝑥1) ≤ 𝑓 ′ (𝑥2).

To guarantee that 𝑓B is monotone with respect to 𝑓 , we need to

restrict our attention to the set of contiguous partitions B ⊆ P
of {1, . . . , 𝑛}, i.e., for any B ∈ B, if 𝑖 (𝑥1) < 𝑖 (𝑥2) < 𝑖 (𝑥3) and
𝑖 (𝑥1) ∼B 𝑖 (𝑥3), then it also holds that 𝑖 (𝑥1) ∼B 𝑖 (𝑥2) and 𝑖 (𝑥2) ∼B
𝑖 (𝑥3). More formally, we have the following result:

Proposition 3.3. Given a classifier 𝑓 with 𝑛 bins, 𝑓B is monotone
with respect to 𝑓 iff B is a contiguous partition on {1, . . . , 𝑛}.

Algorithm 1 It returns the optimal partition B∗
such that 𝑓B∗ is

within-group monotone.

1: Input:
{
𝑎1,𝑧 , . . . , 𝑎𝑛,𝑧

}
𝑧∈Z

2: Initialize: B𝑙,𝑟 = {} ∀𝑙, 𝑟 ∈ {2, . . . , 𝑛}, B1,𝑟 = {1, . . . , 𝑟 } ∀𝑟 ∈
{1, . . . , 𝑛}

3: for 𝑙 ∈ {2, . . . , 𝑛} do
4: for 𝑟 ∈ {𝑙, . . . , 𝑛} do
5: S𝑙,𝑟 =

{
𝑘 |𝑘 < 𝑙, 𝑎{𝑘,...,𝑙−1},𝑧 ≤ 𝑎{𝑙,...,𝑟 },𝑧 ∀𝑧 ∈ Z

}
{Refer to

Lemma. 4.1}

6: if S𝑙,𝑟 = ∅ then
7: Continue {In this case B𝑙,𝑟 = ∅}
8: end if
9: 𝑘∗ = argmax𝑘∈S𝑙,𝑟

��B𝑘,𝑙−1
��

10: B𝑙,𝑟 = B𝑘∗,𝑙−1 ∪ {{𝑙, . . . , 𝑟 }}
11: end for
12: end for
13: 𝑙∗ = argmax𝑖∈{1,...,𝑛}

��B𝑖,𝑛

��
14: return B𝑙∗,𝑛

Surprisingly, while |B | = 2
𝑛−1

, we will show in the next sec-

tion that it is possible to find the optimal contiguous partition

B∗ = argmaxB∈B |B| such that 𝑓B∗ is within-group monotone in

polynomial time using dynamic programming.

4 OPTIMAL SET PARTITIONING VIA
DYNAMIC PROGRAMMING

In this section, we derive an efficient algorithm based on dynamic

programming that is guaranteed to find the optimal partition.

Our starting point is the following observation, which allows us

to break down the problem of finding the optimal partition B∗
into

several subproblems. Let B𝑟 be the set of contiguous partitions of

the bin indices {1, . . . , 𝑟 }, with 𝑟 ≤ 𝑛, and B𝑙,𝑟 ⊆ B𝑟 be the subset

of those partitions such that, for anyB = {A1, . . . ,A | B | } ∈ B𝑙,𝑟 , it

holds that A | B | = {𝑙, . . . , 𝑟 } and 𝑓B∪B′ is within-group monotone

on the region of the feature space defined by ∪𝑖≤𝑟X𝑖 , where B′

is any partition of the bin indices {𝑟 + 1, . . . , 𝑛}3. Then, it clearly
holds that the optimal partition B∗ ∈ ∪𝑛

𝑙=1
B𝑙,𝑛 and thus we can

break the problem of finding B∗
into 𝑛 subproblems, i.e., finding

the optimal partition B∗
𝑙,𝑛

= argmaxB∈B𝑙,𝑛
|B| within each subset

B𝑙,𝑛 . From now on, with a slight abuse of notation, we will write

𝑓B instead of 𝑓B∪B′ whenever B′
refers to any partition of the bin

indices not in B.

Next, we realize that we can efficiently find the optimal partition

B∗
𝑙,𝑛

in each subset B𝑙,𝑛 recursively using dynamic programming.

The key idea of the recursion is that any partition B ∈ B𝑙,𝑟 needs

to satisfy the following necessary and sufficient conditions:

Lemma 4.1. Given any B ∈ B𝑟 , it holds that B ∈ B𝑙,𝑟 if and only
if ∃𝑘 < 𝑙 such that B \ {{𝑙, . . . , 𝑟 }} ∈ B𝑘,𝑙−1 and 𝑎{𝑘,...,𝑙−1},𝑧 ≤
𝑎{𝑙,...,𝑟 },𝑧 ∀𝑧 ∈ Z.

Consequently, we can efficiently find all the partitions in the

subsets B𝑙,𝑟 iterating through 𝑙 using the partitions in the subsets

B𝑘,𝑙−1 with 𝑘 < 𝑙 . Finally, by construction, it clearly holds that, if

B∗
𝑙,𝑟

= B′ ∪ {{𝑙, . . . , 𝑟 }}, with B′ ∈ B𝑘,𝑙−1, is the optimal partition

3
Note that it may be impossible to satisfy both conditions simultaneously if, for example, the

Simpon’s paradox [13] holds, i.e., for every group 𝑧 ∈ Z and every pair of indices 𝑖 < 𝑗 , we have

that 𝑎𝑖,𝑧 > 𝑎 𝑗,𝑧 . In those cases, we may have that B𝑙,𝑟 = ∅ for all 1 < 𝑙 ≤ 𝑟 .

3
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in B𝑙,𝑟 then B′ = B∗
𝑘,𝑙−1 is the optimal partition in B𝑘,𝑙−1. As

a result, at each step of the recursion, we only need to store the

optimal partition B∗
𝑙,𝑟
.

Algorithm 1 summarizes the overall procedure, which has com-

plexity O(𝑛3 × |Z|) and is guaranteed to find the optimal partition

B∗
, as formalized by the following theorem:

Theorem 4.2. Algorithm 1 returns B∗ = argmaxB∈B |B| such
that 𝑓B∗ is within-group monotone.

Remark The problem of finding a within-group monotone clas-

sifier relates to isotonic regression and within-group calibration.

More specifically, since the structure of our problem resembles iso-

tonic regression, one may think of using a simple variation of the

Pool Adjacent Violators (PAV) algorithm [14] to find the optimal

(contiguous) partition. However, in Appendix B, we show that the

PAV algorithm (Algorithm 2) may not find the optimal partition.

Furthermore, it is not even guaranteed to find a partition satisfy-

ing an intuitive type of local optimality. Within-group calibration

requires that the probability that a candidate is qualified is inde-

pendent of their group membership conditioned on their quality

score and hence implies within-group monotonicity. In Appendix C,

we first propose an algorithm to find an optimal within-group cal-

ibrated classifier (Algorithm 3). Then, we show that finding the

optimal within-group calibrated classifier is computationally easier,

however, in many cases, such a classifier may not exist and, when

it does, the size of its partition may be much smaller than the size

of B∗
, leading to less fine-grained predictions.

5 EXPERIMENTS USING SURVEY DATA
In this section, we create multiple instances of a simulated screening

process using US Census survey data to first investigate how fre-

quently within-group unfairness occurs in a recruiting domain. We

then compare the partitions, as well as induced screening classifiers,

provided by Algorithms 1, 2 and 3 in Appendix E.

Experimental setup. We use a dataset consisting of ∼3.2 million

individuals from the US Census [15]. Each individual is represented

by sixteen features and one label 𝑦 ∈ {0, 1} indicating whether

the individual is employed (𝑦 = 1) or not (𝑦 = 0). We think of

employment as a (imperfect) proxy of qualification. The features

contain demographic information such as age, gender, etc (Appen-

dix B4, [15]). We run four sets of experiments where, in each of

them, we use a different feature (US citizen status, race, gender, or

disability record) to define the demographic groups of interest Z4
.

For the experiments, we randomly split the dataset into two

equally-sized and disjoint subsets. We use the first subset for trai-

ning and calibration and the second subset for testing. More specif-

ically, for each experiment, we create the training and calibration

sets Dtr and D
cal

by picking 100,000 and 50,000 individuals at ran-

dom (without replacement) from the first subset. We use Dtr to

train a logistic regression model 𝑓𝐿𝑅
5
and useD

cal
to both (approxi-

mately) calibrate 𝑓𝐿𝑅 using uniform mass binning (UMB) [2, 16], i.e.,
discretize its outputs to 𝑛 calibrated quality scores, and estimate the

relevant probabilities 𝜌𝑖 , 𝑎𝑖 , 𝜌𝑧 | 𝑖 and 𝑎𝑖,𝑧 needed by Algorithms 1, 2,

and 3. The resulting (approximately) calibrated classifier serves as

4
In this section, we focus mainly on groups Z based on US citizenship status and race. However,

Appendix E.4 shows similar results for groups Z defined based on gender and disability record.

5
The classifier 𝑓𝐿𝑅 achieves a test accuracy of ∼74% at predicting whether an individual is qualified.

our screening classifier 𝑓 . For testing, we create a set {D𝑖
pool

}100
𝑖=1

of 100 pools, each with𝑚 = 100 individuals picked at random from

the second subset, and create (the smallest) shortlists with at least

𝑘 qualified individuals using the screening classifiers 𝑓B∗ , 𝑓Bpav
,

and 𝑓B∗
cal

induced by the partitions found by Algorithms 1, 2 and 3,

respectively. Throughout the experiments, we estimate the average

and the standard error of the reported quantities by repeating each

experiment 100 times.

Within-group unfairness occurs frequently between indi-
viduals from minority groups, especially with fine-grained
classifiers.We start by estimating the probability 𝑝𝑑 | 𝑧 that an indi-
vidual from a demographic group of interest 𝑧 ∈ Z may suffer from

within-group unfairness, i.e., 𝑝𝑑 | 𝑧 = 1

Pr(𝑍=𝑧 )
∑
𝑖∈{1,...,𝑛} 𝜌𝑖𝜌𝑧 | 𝑖𝑣𝑖 ,

where 𝑣𝑖 = I
[
∃𝑎 𝑗 ∈ Range(𝑓 ) | 𝑎𝑖 < 𝑎 𝑗 ∧ 𝑎𝑖,𝑧 > 𝑎 𝑗,𝑧

]
. Figure 2a sum-

marizes the results for a screening classifier 𝑓 with 𝑛 = 15 bins. We

find that individuals who belong to minority groups are much more

likely to suffer fromwithin-group unfairness than those who belong

to a majority group. For example, the probability that an individual

who is not a US citizen may suffer from within-group unfairness is

𝑝𝑑 | 𝑧 > 0.3 while it is almost impossible that an individual born in

the US is treated unfairly within its group. Further, we investigate

to what extent the probability 𝑝𝑑 =
∑
𝑧∈Z 𝑃 (𝑍 = 𝑧)𝑝𝑑 | 𝑧 that an

individual may suffer from within-group unfairness depends on the

number of bins 𝑛 of 𝑓 . Figure 2b shows that the more fine-grained a

classifier is, the higher the probability that an individual may suffer

from within-group unfairness, e.g., for 𝑛 ≤ 10, 𝑝𝑑 < 0.05 while, for

𝑛 = 40, 𝑝𝑑 > 0.12 across all sets of groups Z. Since the accuracy of

a calibrated classifier is related to how fine-grained its predictions

are [2], the above finding suggests that high accuracy may have a

cost in terms of within-group unfairness.

Our results so far show that the probability that individuals may
suffer fromwithin-group unfairness is significant. Next, we estimate

the probability that, in a test pool of size𝑚, an individual does suf-
fer from within-group unfairness, i.e., 𝑝𝑑 | Dpool

= 1

𝑚

∑
𝑥∈Dpool

𝑣𝑥 ,

where 𝑣𝑥 = I
[
∃𝑥 ′ ∈ D

pool
| 𝑎𝑖 (𝑥 ) < 𝑎𝑖 (𝑥 ′ ) ∧ 𝑎𝑖 (𝑥 ),𝑧 > 𝑎𝑖 (𝑥 ′ ),𝑧

]
. Fig-

ure 2c shows that, on average across all test pools, the probability

𝑝𝑑 | Dpool

follows the same trend as 𝑝𝑑 , however, it is slightly lower

in value because each of the test pools is not representative of the

entire population. However, note that, as𝑚 → ∞, one can readily

conclude that 𝑝𝑑 | Dpool

→ 𝑝𝑑 .

Algorithm 1 consistently provides larger partitions, which
result in more fine-grained classifiers and smaller shortlists,
than Algorithms 2 and 3. We further compare the partitions, as

well as induced screening classifiers, provided by Algorithms 1, 2

and 3. Our results show that, as expected, Algorithm 1 consistently

provides larger partitions, which result in more fine-grained clas-

sifiers and smaller shortlists, than Algorithms 2 and 3. Refer to

Appendix E for a detailed discussion.

6 CONCLUSIONS
In this work, we have first shown that optimal screening policies

using calibrated classifiers may suffer from an understudied type

of within-group unfairness. Then, we have developed a polynomial

time algorithm based on dynamic programming to minimally mod-

ify any given calibrated classifier so that it satisfies within-group

4
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(c) 𝑝𝑑 | Dpool vs. 𝑛

Figure 2: Probability that an individual suffers from within-group unfairness. Panel (a) shows the probability 𝑝𝑑 | 𝑧 that an
individual from group 𝑧 may suffer from within-group unfairness against Pr(𝑍 = 𝑧) for 𝑛 = 15. Panel (b) shows the probability
𝑝𝑑 that an individual may suffer from within-group unfairness and Panel (c) shows the probability 𝑝𝑑 | Dpool that an individual
suffers from within-group unfairness in a test pool Dpool of size𝑚, averaged across all test pools, against 𝑛 = |Range(𝑓 )|.

monotonicity, a natural monotonicity property that prevents the

occurrence of within-group unfairness. Finally, we have shown that

within-group monotonicity can be achieved at a small cost in terms

of prediction granularity and shortlist size.

Our work opens up many interesting avenues for future work.

For example, it would be interesting to design classifiers that are

within-group monotone with respect to every group that can be

identified within a specified class of computations [17]. Further, it

would be important to investigate how within-group monotonicity

interacts with group fairness [9, 18]. Finally, it would be inter-

esting to design post-processing algorithms using a sample access

model [19] rather than a prediction-only access model and optimize

other quality measures different from the partition size.
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A RELATEDWORK.
There is an extensive and rapidly growing line of work addressing bias and discrimination in the machine learning literature (refer to [20]

for a detailed survey). This line of work has applications in a variety of important domains, including health care, criminal justice, and

recommender systems. However, it has predominantly focused on preventing discrimination across demographic groups of interest, e.g.,
designing machine learning models whose predictive performance is invariant across groups. In contrast, we focus on preventing unfairness

within groups.

Within the above machine learning literature, there are a few notable exceptions [21–24], which studied similar notions to within-group

monotonicity (in the context of ranking) and within-group unfairness. Among them, the notion of in-group monotonicity by [21, 24]

is perhaps the most similar to within-group monotonicity. However, it comprises only the top-𝑘 ranked candidates in a specific pool of

candidates (i.e., in our work, the shortlisted candidates), rather than every candidate in a population of interest, and unconditional quality

scores, rather than group conditional quality scores. Moreover, their formulation is fundamentally different and their technical contributions

are orthogonal to ours. [22] addresses within-group unfairness as a measure of how unequally members within a group benefit from

algorithmic decisions. In contrast, our notion of within-group monotonicity asks for accurately ranking individuals belonging to a group

in terms of how worthy they are of receiving a beneficial decision rather than equally benefiting them. In this context, it is also worth

highlighting the notion of within-group calibration [25], which implies within-group monotonicity, as discussed previously. Within-group

calibration asks for equally well-calibrated probability estimates across groups so that a decision maker cannot use group membership to

interpret these estimates. However, in the context of screening, our results show that within-group calibration may be an unnecessarily

strong requirement.

Our work also relates to a line of work devoted to the study of calibration in supervised learning [16, 26]. Here, the main focus has been

the design of classifiers with low calibration error using calibration-aware training or post-hoc re-calibration. However, there have also been

efforts to ensure calibration errors are bias-free [27]. Here, we do not aim to minimize calibration error but ensure a calibrated classifier

satisfies within-group monotonicity.

6
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Algorithm 2 It returns a partition Bpav such that 𝑓Bpav
is within-group monotone.

1: Input:
{
𝑎1,𝑧 , . . . , 𝑎𝑛,𝑧

}
𝑧∈Z

2: Initialize: Bpav = {{1} , . . . , {𝑛}}
3: while ∃A𝑖−1, A𝑖 ∈ Bpav and 𝑧 ∈ Z such that 𝑎A𝑖 ,𝑧 < 𝑎A𝑖−1,𝑧 do
4: Bpav = Bpav \ {A𝑖−1, A𝑖 }
5: Bpav = Bpav ∪ {A𝑖−1 ∪ A𝑖 }
6: end while
7: return Bpav

B POOL ADJACENT VIOLATORS (PAV) ALGORITHM
Since the structure of our problem resembles isotonic regression, one may think of using a simple variation of the many times re-discovered

Pool Adjacent Violators (PAV) algorithm [14] to find the optimal (contiguous) partition. However, in what follows, we first show that the PAV

algorithm may not find the optimal partition—it is not even guaranteed to find a partition satisfying an intuitive type of local optimality. In

comparison with the original PAV algorithm, the only difference is that, in our setting, one needs to check for monotonicity violations across

multiple sets of conditional predictors, one per group 𝑧 ∈ Z, rather than only one set of predictors. However, the main idea underpinning

the PAV algorithm remains the same, i.e., as long as there are monotonicity violations between two adjacent cells, the algorithm merges the

corresponding cells into one. Algorithm 2 summarizes the overall procedure, which has complexity O(𝑛2 × |Z|) and is guaranteed to return

a partition Bpav such that 𝑓Bpav
is within-group monotone, as formalized by the following Proposition:

Proposition B.1. Algorithm 2 returns a partition Bpav ∈ B such that the classifier 𝑓Bpav is within-group monotone.

Unfortunately, while the original PAV algorithm does enjoy global optimality guarantees for the isotonic regression problem
6
under

multiple choices of loss functions [29], this is not true for our problem. There exist many instances for which Algorithm 2 fails to find the

optimal partition B∗
, with one being the following example:

Example 1. let Range(𝑓 ) = {𝑎1, 𝑎2, 𝑎3}, Z = {𝑧1, 𝑧2} and 𝜌𝑖𝜌𝑧 | 𝑖 =
1

6
for all 𝑖 ∈ {1, 2, 3} and 𝑧 ∈ Z. Further, let 𝑎1,𝑧2 = 𝑎2,𝑧1 = 𝑎3,𝑧2 = 𝛼 ,

𝑎1,𝑧1 = 2𝛼 , 𝑎2,𝑧2 = 3𝛼 and 𝑎3,𝑧1 = 4𝛼 , where 𝛼 ∈ [0, 0.25]. First, we note that, by construction, it holds that 𝑎1 = 3

2
𝛼 < 𝑎2 = 2𝛼 < 𝑎3 = 5

2
𝛼 .

Now, since 𝑎1,𝑧1 > 𝑎2,𝑧1 , Algorithm 2 first merges these two bins, then, since 𝑎{1,2},𝑧2 > 𝑎{3},𝑧2 , it merges all the three bins together and finally
it terminates, returning B = {{1, 2, 3}}. However, since it holds that 𝑎1,𝑧1 < 𝑎{2,3},𝑧1 and 𝑎1,𝑧2 < 𝑎{2,3},𝑧2 , it clearly holds that the partition
B′ = {{1} , {2, 3}} induces a classifier 𝑓B′ that is within-group monotone and it readily follows that 𝑓B′ dominates 𝑓B .

Also refer to Figure 5 in Appendix E.2. In fact, Algorithm 2 does not even enjoy a type of intuitive local optimality guarantee based on the

notion of dominance [2]:

Definition B.2. Let 𝑓 and 𝑓 ′ be calibrated classifiers. Classifier 𝑓 dominates 𝑓 ′ if, for any 𝑥1, 𝑥2 ∈ X such that 𝑓 (𝑥1) = 𝑓 (𝑥2), it holds that
𝑓 ′ (𝑥1) = 𝑓 ′ (𝑥2).

More specifically, if 𝑓B dominates 𝑓B′ , it can be shown that the expected size of the shortlists provided by the optimal screening policies

using 𝑓B are not larger than those using 𝑓B′ (Corollary 4.3, [2]) and it clearly holds that |B| ≥ |B′ |.
The reason why Algorithm 2 may fail to find the optimal partition is that, whenever it tries to fix a monotonicity violation between

two adjacent cells A𝑖−1 and A𝑖 , it does so by merging them. However, in our problem, the optimal fix may require merging cells A𝑖 and

A𝑖+1. partition.

6
In the isotonic regression problem [28], given a set of response variables {𝑦𝑖 }𝑖∈ [𝑛] , the goal is to find a set of predictor values {𝑥𝑖 }𝑖∈ [𝑛] , with 𝑥𝑖 ≤ 𝑥𝑖+1 for all 𝑖 ∈ [𝑛] , such that

∑
𝑖 ℓ (𝑥𝑖 , 𝑦𝑖 ) is minimized,

where ℓ (𝑥𝑖 , 𝑦𝑖 ) is a loss measuring how well 𝑥𝑖 approximates 𝑦𝑖 .
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Algorithm 3 It returns the optimal partition B∗
cal

such that 𝑓B∗
cal

within-group calibrated.

1: Input:
{
𝑎1,𝑧 , . . . , 𝑎𝑛,𝑧

}
𝑧∈Z

2: Initialize: B
cal,𝑖 = {} ∀𝑖 ∈ {1, . . . , 𝑛}

3: if 𝑎1,𝑧 = 𝑎1 ∀𝑧 ∈ Z then
4: B

cal,1 = {{𝑎1}}
5: end if

6: for 𝑟 ∈ {2, . . . , 𝑛} do
7: S𝑟 =

{
𝑖 ∈ {2, . . . , 𝑟 } | 𝑎{𝑖,...,𝑟 },𝑧 = 𝑎{𝑖,...,𝑟 } ∀𝑧 ∈ Z

}
8: 𝑘∗ = argmax𝑘∈S𝑟

��B
cal,𝑘−1

��
9: if B

cal,𝑘∗−1 ≠ ∅ then
10: B

cal,𝑟 = B
cal,𝑘∗−1 ∪ {{𝑘∗, . . . , 𝑟 }}

11: else if 𝑎{1,...,𝑟 } = 𝑎{1,...,𝑟 },𝑧 ∀𝑧 ∈ Z then
12: B

cal,𝑟 = {{1, . . . , 𝑟 }}
13: end if
14: end for
15: return B

cal,𝑛

C WITHIN-GROUP MONOTONICITY VS WITHIN-GROUP CALIBRATION
Within-group calibration, or calibration within groups requires that the probability that a candidate is qualified is independent of their

group membership conditioned on their quality score. More specifically, it is defined as follows [25, 30]:

Definition C.1. Given a set of groups Z, a classifier 𝑓 is within-group calibrated iff, for every 𝑧 ∈ Z, 𝑎 ∈ Range(𝑓 ) such that Pr(𝑍 =

𝑧 | 𝑓 (𝑋 ) = 𝑎) > 0, it holds that Pr(𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎, 𝑍 = 𝑧) = 𝑎.

As discussed previously, within-group calibration implies within-group monotonicity. Then, to minimally modify a calibrated classifier

𝑓 so that it becomes within-group monotone, one may think of finding the optimal partition B∗
cal

= argmaxB∈B |B| such that 𝑓B is

within-group calibrated. In what follows, we will first show that, perhaps surprisingly, finding B∗
cal

is computationally easier7 than finding

B∗
. However, we will further show that, in many cases, B∗

cal
may not exist and, when it does, the size of B∗

cal
may be much smaller than the

size of B∗
, leading to less fine-grained predictions.

To find the optimal B∗
cal

, we proceed recursively. Let B𝑟 be the set of contiguous partitions of the bin indices {1, . . . , 𝑟 }, with 𝑟 ≤ 𝑛. Then,

iterating through 𝑟 , we find the optimal partitions B∗
cal,𝑟

= argmaxB∈B𝑟
|B| such that 𝑓B∗

cal,𝑟
is within-group calibrated in ∪𝑖≤𝑟X𝑖 . In this

case, the key idea of the recursion is that any partition B ∈ B𝑟 such that 𝑓B is within-calibrated on ∪𝑖≤𝑟X𝑖 needs to satisfy the following

necessary and sufficient condition:

Lemma C.2. Given any B ∈ B𝑟 , it holds that 𝑓B is within-calibrated on ∪𝑖≤𝑟X𝑖 if and only if ∃𝑙 < 𝑟 such that B\ {{𝑙, . . . , 𝑟 }} ∈ B𝑙−1 and
𝑓B\{{𝑙,...,𝑟 }} is within-group calibrated on ∪𝑖≤𝑙−1X𝑖 and 𝑎{𝑙,...,𝑟 },𝑧 = 𝑎{𝑙,...,𝑟 } ∀𝑧 ∈ Z.

As a consequence, we can efficiently find all partitions B in the subsets B𝑟 such that 𝑓B is within-group calibrated iterating through 𝑟

using the partitions B′
in the subsets B𝑙 with 𝑙 < 𝑟 such that 𝑓B′ is within-group calibrated. Finally, by construction, it clearly holds that if

the optimal partition B∗
cal,𝑟

= B′ ∪ {{𝑙, . . . , 𝑟 }}, with B′ ∈ B𝑙−1, is the optimal partition in B𝑟 then B′ = B∗
cal,𝑙−1 is the optimal partition in

B𝑙−1. As a result, at each step of the recursion, we only need to store the optimal partition B∗
𝑟 , not all partitions B ∈ B𝑟 such that 𝑓B is

within-group calibrated, and reuse it to find all B∗
𝑟 ′ with 𝑟

′ > 𝑟 .

Algorithm 3 summarizes the overall procedure, which has complexity O(𝑛2 × |Z|) and is guaranteed to find the optimal partition B∗
cal

, if

such a partition exists, as formalized below:

Theorem C.3. Algorithm 3 returns B∗
cal = argmaxB∈B |B| such that 𝑓B∗

cal
is within-group calibrated if such partition exists or ∅ otherwise.

Unfortunately, there are many cases in which B∗
cal

does not exist, e.g., this will happen if 𝑓 systematically undervalues the probability that

individuals from a group are qualified, in comparison with individuals from another group:

Proposition C.4. Let Z = {𝑧, 𝑧′}, 𝜌𝑧 | 𝑖 = 𝜌𝑧′ | 𝑖 and 𝑎𝑖,𝑧 < 𝑎𝑖,𝑧′ for all 𝑖 ∈ {1, . . . , 𝑛}. Then, there exists no B ∈ B such that 𝑓B is
within-group calibrated.

In the above situation, 𝑓 may actually be within-group monotone and thus |B∗ | = 𝑛. Even if B∗
cal

exists, there are examples where

|B∗ | − |B∗
cal

| = 𝑛 − 1.

7
Using a similar proof technique as in Theorem 3.1, it can be proven that the problem of finding the partition B ∈ P of maximum size such that 𝑓B is within-group calibrated is NP-hard. Therefore, in general,

the computational complexity is not lower.
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D PROOFS
D.1 Proof of Proposition 2.1
By definition, the threshold decision rule 𝜋 outputs 𝑆 = 0 if 𝑓 (𝑋 ) = 𝑎 and 𝑆 = 1 if 𝑓 (𝑋 ) = 𝑏. As a result, it immediately follows that:

E𝑌∼𝑃𝑌 |𝑋,𝑍 , 𝑆∼𝜋 [𝑌 (1 − 𝑆) | 𝑓 (𝑋 ) = 𝑎, 𝑍 = 𝑧] = E𝑌∼𝑃𝑌 |𝑋,𝑍
[𝑌 | 𝑓 (𝑋 ) = 𝑎, 𝑍 = 𝑧]
> E𝑌∼𝑃𝑌 |𝑋,𝑍

[𝑌 | 𝑓 (𝑋 ) = 𝑏, 𝑍 = 𝑧] = E𝑌∼𝑃𝑌 |𝑋,𝑍 , 𝑆∼𝜋 [𝑌𝑆 | 𝑓 (𝑋 ) = 𝑏, 𝑍 = 𝑧] .

D.2 Proof of Theorem 3.1
We call a partition B ∈ P valid if 𝑓B is within-group monotone. We first show that, by finding a valid partition B of maximum size, we can

decide whether there exists a valid partition B′
of size |B′ | = 2. Assume the valid partition B of maximum size has size |B| =𝑚. Then, if

𝑚 ≥ 2, we can conclude that such a partition exists using Lemma D.1 and, if𝑚 < 2, no such partition exists because B is the valid partition

of maximum size. Now, since we prove in Lemma D.2 that this decision problem is NP-complete, we can directly conclude that the problem

of finding the valid partition of maximum size is NP-hard.

Lemma D.1. Assume the valid partition B of maximum size has size |B| = 𝑘 . Then for every 𝑘′ ∈ {1, . . . , 𝑘 − 1}, there exist a valid partition
B′ such that |B′ | = 𝑘′.

Proof. By Proposition 3.3, we have that any contiguous partition B′
on {1, . . . , |B|} is monotone with respect to 𝑓B . Furthermore,

due to the same proposition, B′
is also monotone with respect to the set

{
𝑎A𝑖 ,𝑧

}
𝑖∈{1,..., | B | } for all 𝑧 ∈ Z. Since B is valid, we have

that

{
𝑎A𝑖 ,𝑧

}
𝑖∈{1,..., | B | } is increasing for all 𝑧 ∈ Z. As a result, B′

is a valid partition. Thus, for any 𝑘′ ∈ {1, . . . , 𝑘 − 1}, we have that the
contiguous partition B′ =

{
A1,A2, . . . ,A | B |−𝑘 ′−1,∪𝑗∈{0,...,𝑘 ′ }A | B |− 𝑗

}
is valid and |B′ | = 𝑘′. This concludes the proof. □

Lemma D.2. The problem of deciding whether there exists a valid partition B such that |B| = 2 is NP-complete.

Proof. First it is easy to see that, given a partition B, we can check whether the partition is valid and has size |B| = 2 in polynomial

time. Therefore, the problem belongs to NP.

Now, to show the problem is NP-complete, we perform a reduction from a variation of the classical partition problem [5], which we

refer to as the equal average partition problem. The equal average partition problem seeks to decide whether a set of 𝑛 positive integers

S = {𝑠1, . . . , 𝑠𝑛} can be partitioned into two subsets of equal average. In Theorem D.3, we prove that the equal average partition problem is

NP-complete, a result which may be of independent interest
8
.

Without loss of generality, we assume 𝑠𝑖 ∈ [0, 1] for all 𝑠𝑖 ∈ S9
and, 𝑠𝑖 ≤ 𝑠 𝑗 if 𝑖 < 𝑗 . For every 𝑠𝑖 ∈ S, we set 𝑎𝑖,𝑧1 = 𝑠𝑖 , 𝑎𝑖,𝑧2 = 1 − 𝑠𝑖 ,

𝜌𝑖 =
1

𝑛 , 𝜌𝑧1 | 𝑖 = 𝛼 , 𝜌𝑧2 | 𝑖 = 1− 𝛼 for 𝛼 ∈ (0.5, 0.75]. Note that we will have that 𝑎𝑖 = 𝛼𝑠𝑖 + (1− 𝛼) (1− 𝑠𝑖 ) = (2𝛼 − 1)𝑠𝑖 + (1− 𝛼) ∈ [0, 1]. Note
first that for any A ∈ B

𝑎A,𝑧1 =

∑
𝑗∈A 𝜌 𝑗𝜌𝑧1 | 𝑗𝑎 𝑗,𝑧1∑

𝑗∈A 𝜌 𝑗𝜌𝑧1 | 𝑗
=

∑
𝑗∈A

𝛼
𝑛 𝑎 𝑗,𝑧1∑

𝑗∈A
𝛼
𝑛

=

∑
𝑗∈A 𝑎 𝑗,𝑧1

|A| = 1 −
∑

𝑗∈A (1 − 𝑎 𝑗,𝑧1 )
|A| = 1 − 𝑎A,𝑧2 . (2)

, and

𝑎A =

∑
𝑗∈A ((2𝛼 − 1)𝑎 𝑗,𝑧1 + 1 − 𝛼)

|A| = (2𝛼 − 1)
∑

𝑗∈A 𝑎 𝑗,𝑧1

|A| + 1 − 𝛼 = (2𝛼 − 1)𝑎A,𝑧1 + 1 − 𝛼 (3)

Note that, whenever we have that 𝑎A,𝑧1 ≤ 𝑎A′,𝑧1 , it will also hold that 𝑎A < 𝑎A′ as 2𝛼 − 1 > 0.

Now, assume a valid partition B with |B| = 2 exists and B = {A1,A2}. Without loss of generality, assume 𝑎A1,𝑧1 ≤ 𝑎A2,𝑧1 . Since B is a

valid partition, we should have also that 𝑎A1,𝑧2 ≤ 𝑎A2,𝑧2 , furthermore,

𝑎A1,𝑧1 ≤ 𝑎A2,𝑧1 ⇒ 1 − 𝑎A1,𝑧1 ≥ 1 − 𝑎A2,𝑧1 ⇒ 𝑎A1,𝑧2 ≥ 𝑎A2,𝑧2 (4)

Since it simultaneously holds that 𝑎A1,𝑧2 ≥ 𝑎A2,𝑧2 and 𝑎A1,𝑧2 ≤ 𝑎A2,𝑧2 , a valid partitionB with |B| = 2 exists if and only if 𝑎A1,𝑧2 = 𝑎A2,𝑧2

and hence 𝑎A1,𝑧1 = 𝑎A2,𝑧1 . As 𝑎A1,𝑧1 is the average of 𝑠 𝑗 for 𝑗 ∈ A1 and 𝑎A2,𝑧1 is the average of 𝑠 𝑗 for 𝑗 ∈ A2 the partition B can partition

S into two subsets of equal average.

We now prove that if no valid partition B with |B| = 2 exists, there is no way of partitioning S into two subsets of equal average. For the

sake of contradiction, assume S can be partitioned into S1 and S2 with equal averages ^. Define A1 = {𝑖 | 𝑠𝑖 ∈ S1} and A2 =
{
𝑗 | 𝑠 𝑗 ∈ S2

}
.

Now if we build an instance of our problem based on S as described before and set B = {A1,A2} (clearly we have that B is a partition of

{1, . . . , 𝑛}) we have that 𝑎A1,𝑧1 = 𝑎A2,𝑧1 = ^ , 𝑎A1,𝑧2 = 𝑎A2,𝑧2 = 1−^ (refer to Eq. 2) and 𝑎A1
= 𝑎A2

= (2𝛼 − 1)^ + (1− 𝛼) (refer to Eq. 3). As
a result, we have that B is a valid partition of size 2 which is a contradiction. This concludes the proof. □

Theorem D.3. Given a set of 𝑛 positive integers, the problem of deciding whether it can be partitioned into two non-empty subsets of equal
average is NP-complete.
8
Given the similarity of the equal average partition problem to the classical partition problem, we would have expected to find a proof of NP-completeness elsewhere. However, we

failed to find such a proof in previous work.

9
We can always divide every element in S by the largest member of S to ensure elements fall in [0, 1].
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Proof. First it is easy to see that, given two subsets, we can evaluate in polynomial time their averages and check whether they are equal

or not. Therefore, the problem belongs to NP.

In the remainder of the proof, we will perform a reduction from the equal cardinality partition problem, which is known to be NP-complete,

to the equal average partition problem. In the original problem, we are given a set of 𝑛 positive integers S, where 𝑛 is an even number.

The objective is to decide whether there exist two subsets S1,S2 ⊆ S such that S1 ∪ S2 = S and S1 ∩ S2 = ∅, with |S1 | = |S2 | and∑
𝑖∈S1

𝑖 =
∑

𝑗∈S2
𝑗 .

Now, we will transform an arbitrary instance of that problem into an instance of the equal average partition problem. Let the set of

integers be S′ = S ∪ {𝑛𝜎, 𝑛𝜎}, where 𝜎 =
∑
𝑘∈S 𝑘 . It is easy to see that the average of S′

is equal to
(2𝑛+1)𝜎
𝑛+2 .

We will start by showing that, if we can decide positively about that instance of the equal average partition problem, we can also decide

positively about the original instance of the equal cardinality partition problem. Assume there exists a partition of S′
into two sets S′

1
, S′

2
,

with equal averages. As an intermediate result, we will show that the two copies of the number 𝑛𝜎 cannot belong to the same set S′
1
or S′

2
.

For the sake of contradiction, and without loss of generality, assume that both copies belong to S′
1
.

In the case where S′
1
= {𝑛𝜎, 𝑛𝜎}, it holds that

∑
𝑖∈S′

1

𝑖

|S′
1
| = 𝑛𝜎 and

∑
𝑖∈S′

2

𝑗

|S′
2
| = 𝜎

𝑛 , which is a contradiction, since the two quantities cannot be

equal because of 𝑛 ≥ 2. In cases where S′
1
contains at least one more element, since S′

2
≠ ∅, we get that

∑
𝑖∈S′

1

𝑖

|S′
1
| = 2𝑛𝜎+^

2+𝑙 , with 0 < ^ < 𝜎 and

1 ≤ 𝑙 ≤ 𝑛 − 1, and

∑
𝑗 ∈S′

2

𝑗

|S′
2
| = 𝜎−^

𝑛−𝑙 . It follows that

1

𝑛 − 𝑙
≤ 1 ⇒ 𝜎 − ^

𝑛 − 𝑙
≤ 𝜎 − ^ ⇒

∑
𝑗∈S′

2

𝑗

|S′
2
| < 𝜎

(∗)
⇒

∑
𝑗∈S′

2

𝑗

|S′
2
| <

(2𝑛 + 1)𝜎
𝑛 + 2

⇒
∑

𝑗∈S′
2

𝑗

|S′
2
| <

∑
𝑘∈S′ 𝑘

|S′ | ,

where (∗) holds because 𝑛 > 1. According to Lemma D.4, the last inequality leads to a contradiction. With that, we can conclude that one

copy of 𝑛𝜎 belongs to S′
1
and the other one belongs to S′

2
.

Let S1, S2 be such that S′
1
= {𝑛𝜎} ∪ S1 and S′

2
= {𝑛𝜎} ∪ S2. We will now show that S1 and S2 are a solution to the original instance of

the equal cardinality partition problem, i.e., |S1 | = |S2 | and
∑
𝑖∈S1

𝑖 =
∑

𝑗∈S2
𝑗 . It is trivial to see that S1,S2 have to be non-empty, otherwise

the averages of S′
1
and S′

2
would differ. Since S′

1
, S′

2
are a partition of S′

with equal averages and because of Lemma D.4, we know that

𝑛𝜎 +∑
𝑖∈S1

𝑖

1 + |S1 |
=
𝑛𝜎 +∑

𝑗∈S2
𝑗

1 + |S2 |
=

(2𝑛 + 1)𝜎
𝑛 + 2

. (5)

For the sake of contradiction, assume that either |S1 | ≠ |S2 | or
∑
𝑖∈S1

𝑖 ≠
∑

𝑗∈S2
𝑗 . For brevity, we will focus only on the two following

cases, as any other case leads easily to a contradiction:

• |S1 | < |S2 | and
∑
𝑖∈S1

𝑖 <
∑

𝑗∈S2
𝑗 : Since S1, S2 are such that S1 ∪ S2 = S, it holds that∑︁

𝑗∈S2

𝑗 −
∑︁
𝑖∈S1

𝑖 < 𝜎
(∗)
⇒ (2𝑛 + 1)𝜎

𝑛 + 2

(1 + |S2 |) − 𝑛𝜎 − (2𝑛 + 1)𝜎
𝑛 + 2

(1 + |S1 |) + 𝑛𝜎 < 𝜎 ⇒

(2𝑛 + 1)𝜎
𝑛 + 2

( |S2 | − |S1 |) < 𝜎 ⇒ (2𝑛 + 1) ( |S2 | − |S1 |) < (𝑛 + 2)
(∗∗)
⇒ 2𝑛 + 1 < 𝑛 + 2 ⇒ 𝑛 < 1,

where (∗) follows from Equation 5, and (∗∗) holds because |S2 | − |S1 | ≥ 1. The last inequality is clearly a contradiction.

• |S1 | > |S2 | and
∑
𝑖∈S1

𝑖 >
∑

𝑗∈S2
𝑗 : The proof is the symmetric version of the proof in the previous case.

Therefore, we can conclude that S1 and S2 are a solution to the original problem, i.e., they are a partition of S with equal cardinality and

equal sums.

Lastly, we will show that, if there is no partition of S′
with equal averages, there can be no equal cardinality partition of S with equal

sums. For the sake of contradiction, assume there exist S1, S2 with |S1 | = |S2 | and
∑
𝑖∈S1

𝑖 =
∑

𝑗∈S2
𝑗 . Then, let S′

1
= {𝑛𝜎} ∪ S1 and

S′
2
= {𝑛𝜎} ∪ S2. It is easy to see that ∑

𝑖∈S′
1

𝑖

|S′
1
| =

𝑛𝜎 +∑
𝑖∈S1

𝑖

1 + |S1 |
=
𝑛𝜎 +∑

𝑗∈S2
𝑗

1 + |S2 |
=

∑
𝑖∈S′

2

𝑖

|S′
2
| , (6)

which is a contradiction, since it means that S′
1
and S′

2
are a partition of S′

with equal averages.

Following the above procedure, we can decide whether the original instance of the equal-cardinality problem has a solution or not. As a

consequence, the problem of deciding whether a set of positive integers can be partitioned into two subsets of equal average is NP-complete.

□

Lemma D.4. A set of integers S can be partitioned into two non-empty sets S1, S2 with equal averages
∑

𝑖∈S
1
𝑖

|S1 | =

∑
𝑗 ∈S

2
𝑗

|S2 | , iff
∑

𝑖∈S
1
𝑖

|S1 | =

∑
𝑘∈S 𝑘

|S | ,
with |S1 | ⊂ |S|.

10
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Proof. First, assume there is such a partition of S into S1, S2, with equal averages. It holds that∑
𝑖∈S1

𝑖

|S1 |
=

∑
𝑘∈S 𝑘 −∑

𝑖∈S1
𝑖

|S| − |S1 |
⇒ (|S| − |S1 |)

∑︁
𝑖∈S1

𝑖 = |S1 | ©«
∑︁
𝑘∈S

𝑘 −
∑︁
𝑖∈S1

𝑖
ª®¬ ⇒ |S|

∑︁
𝑖∈S1

𝑖 = |S1 |
∑︁
𝑘∈S

𝑘

⇒
∑
𝑖∈S1

𝑖

|S1 |
=

∑
𝑘∈S 𝑘

|S| ,

where S1 ⊂ S because S2 ≠ ∅.
Now, assume there exists a set S1 ⊂ S, such that

∑
𝑖∈S

1
𝑖

|S1 | =

∑
𝑘∈S 𝑘

|S | and let S2 = S \ S1. It is easy to see that∑
𝑗∈S2

𝑗

|S2 |
=

∑
𝑘∈S 𝑘 −∑

𝑖∈S1
𝑖

|S| − |S1 |
=

∑
𝑘∈S 𝑘 − |S1 |

|S |
∑
𝑘∈S 𝑘

|S|
(
1 − |S1 |

|S |

) =

∑
𝑘∈S 𝑘

|S| ,

and therefore, the sets S1, S2 consist a partition of S with equal averages. □

D.3 Proof of Proposition 3.3
We first prove the sufficient condition, i.e., we prove that, if 𝑓B is monotone with respect to 𝑓 , then B is a contiguous partition on {1, . . . 𝑛}.
The proof is by contradiction. Assume B is not a contiguous partition, i.e., there exists 𝑥1, 𝑥2, 𝑥3 ∈ X such that 𝑖 (𝑥1) < 𝑖 (𝑥2) < 𝑖 (𝑥3)
and 𝑖 (𝑥1) ∼B 𝑖 (𝑥3) while 𝑖 (𝑥1) ≁B 𝑖 (𝑥2). If 𝑎 [𝑖 (𝑥1 ) ] > 𝑎 [𝑖 (𝑥2 ) ] , then 𝑓B (𝑥1) > 𝑓B (𝑥2), however, since 𝑓 (𝑥1) < 𝑓 (𝑥2), this leads to a

contradiction with the monotonicity assumption. On the other hand, if 𝑎 [𝑖 (𝑥1 ) ] < 𝑎 [𝑖 (𝑥2 ) ] , then 𝑓B (𝑥3) < 𝑓B (𝑥2) since 𝑖 (𝑥1) ∼B 𝑖 (𝑥3)
and thus 𝑎 [𝑖 (𝑥3 ) ] < 𝑎 [𝑖 (𝑥2 ) ] , however, this leads again to a contradiction with the monotonicity assumption. This proves that B must be a

contiguous partition.

Next, we prove the necessary condition, i.e., we prove that, if B is a contiguous partition on {1, . . . 𝑛}, then 𝑓B is monotone with respect

to 𝑓 . For any 𝑥1, 𝑥2 ∈ X such that 𝑓 (𝑥1) < 𝑓 (𝑥2), we have that:

𝑓B (𝑥1) = 𝑎 [𝑖 (𝑥1 ) ] =

∑
𝑙∈[𝑖 (𝑥1 ) ] 𝑎𝑙𝜌𝑙∑
𝑙∈[𝑖 (𝑥1 ) ] 𝜌𝑙

≤
∑
𝑙∈[𝑖 (𝑥2 ) ] 𝑎𝑙𝜌𝑙∑
𝑙∈[𝑖 (𝑥2 ) ] 𝜌𝑙

= 𝑎 [𝑖 (𝑥2 ) ] = 𝑓B (𝑥2) .

where the inequality is due to Lemma D.5 below and the fact that the weighted average of a set of numbers is lower and upper bounded by

the smallest and largest element of the set respectively.

Lemma D.5. Let 𝑓 be a classifier with Range(𝑓 ) = {𝑎1, . . . , 𝑎𝑛}, B be a contiguous partition on {1, . . . , 𝑛} and 𝑥1, 𝑥2 ∈ X. If 𝑖 (𝑥1) < 𝑖 (𝑥2) and
𝑖 (𝑥1) ≁B 𝑖 (𝑥2), then, for every 𝑘 ∈ [𝑖 (𝑥1)] and 𝑘′ ∈ [𝑖 (𝑥2)], it holds that 𝑘 < 𝑘′.

Proof. To prove the lemma, we just need to prove that the largest index in [𝑖 (𝑥1)] is smaller than the smallest index in [𝑖 (𝑥2)]. The proof
is by contradiction. Let 𝑙 = max{𝑘 | 𝑘 ∈ [𝑖 (𝑥1)]} and 𝑠 = min{𝑘 | 𝑘 ∈ [𝑖 (𝑥2)]} and assume that 𝑙 > 𝑠 . Then, it cannot simultaneously hold that

𝑖 (𝑥1) = 𝑙 and 𝑖 (𝑥2) = 𝑠 since we have that 𝑖 (𝑥1) < 𝑖 (𝑥2). Assume first that 𝑖 (𝑥1) ≠ 𝑙 , and take 𝑥3, 𝑥4 ∈ X such that 𝑖 (𝑥3) = 𝑠 and 𝑖 (𝑥4) = 𝑙 .

If 𝑖 (𝑥3) < 𝑖 (𝑥1), then it holds that 𝑖 (𝑥3) < 𝑖 (𝑥1) < 𝑖 (𝑥2), however, since 𝑖 (𝑥2) ∼B 𝑖 (𝑥3) and 𝑖 (𝑥1) ≁B 𝑖 (𝑥2), this leads to a contradiction

with the assumption that B is contiguous. If 𝑖 (𝑥3) > 𝑖 (𝑥1), then it holds that 𝑖 (𝑥1) < 𝑖 (𝑥3) < 𝑖 (𝑥4), however, since 𝑖 (𝑥1) ∼B 𝑖 (𝑥4) while
𝑖 (𝑥3) ≁B 𝑖 (𝑥4), this also leads to a contradiction with the assumption that B is contiguous. If one assumes instead that 𝑖 (𝑥1) = 𝑙 , a similar

reasoning using 𝑖 (𝑥2) and 𝑖 (𝑥4) leads to a contradiction too. This completes the proof. □

D.4 Proof of Lemma 4.1
We first prove the sufficient condition, i.e., we prove, for any B ∈ B𝑙,𝑟 , ∃𝑘 < 𝑙 such that B\{{𝑙, . . . , 𝑟 }} ∈ B𝑘,𝑙−1 and 𝑎{𝑘,...,𝑙−1},𝑧 ≤ 𝑎{𝑙,...,𝑟 },𝑧
∀𝑧 ∈ Z. Let B′ = B \ {{𝑙, . . . , 𝑟 }}. To this end, we start by proving by contradiction that ∃𝑘 < 𝑙 such that B′ ∈ B𝑘,𝑙−1. Since the partition B
covers {1, . . . , 𝑟 }, we have that the last cell of B′

contains bin 𝑙 − 1. Assume B′ ∉ ∪𝑙−1
𝑘=1

B𝑘,𝑙−1. Then, there must exist A,A′ ∈ B′
and 𝑧 ∈ Z

such that 𝑎A < 𝑎A′ and 𝑎A,𝑧 > 𝑎A,𝑧′ . However, since B′ ⊂ B, it also holds that A,A′ ∈ B and 𝑓B cannot be within-group monotone on

∪𝑖≤𝑟X𝑖 , leading to a contradiction. Therefore, it must hold that B′ ∈ ∪𝑙−1
𝑘=1

B𝑘,𝑙−1. Now, to prove that, if B′ ∈ ∪𝑙−1
𝑘=1

B𝑘,𝑙−1 and B ∈ B𝑙,𝑟 ,

then it must hold that 𝑎{𝑘,...,𝑙−1},𝑧 ≤ 𝑎{𝑙,...,𝑟 },𝑧 ∀𝑧 ∈ Z, we resort to Lemma D.6.

We next prove the necessary condition, i.e., we prove that, given any B ∈ B𝑟 , if ∃𝑘 < 𝑙 such that B \ {{𝑙, . . . , 𝑟 }} ∈ B𝑘,𝑙−1 and

𝑎{𝑘,...,𝑙−1},𝑧 ≤ 𝑎{𝑙,...,𝑟 },𝑧 ∀𝑧 ∈ Z then B ∈ B𝑙,𝑟 . Let B′ = B \ {{𝑙, . . . , 𝑟 }}. Since B′ ∈ B𝑘,𝑙−1, we know that no violations of within-group

monotonicity occurs on ∪𝑖≤𝑙−1X𝑖 . Now, we prove that there are no violations of within-group monotonicity between {𝑙, . . . , 𝑟 } and any

A ∈ B′
. By assumption, we know that there are not violations of within-group monotonicity between {𝑙, . . . , 𝑟 } and {𝑘, . . . , 𝑙 − 1}. Then, we

prove by contradiction that there are not violations between {𝑙, . . . , 𝑟 } and any A ∈ B′ \ {{𝑘, . . . , 𝑙 − 1}}. For any A ∈ B′ \ {{𝑘, . . . , 𝑙 − 1}},
it follows from Proposition 3.3 that 𝑎A < 𝑎{𝑘,...,𝑙−1} and 𝑎A < 𝑎{𝑙,...,𝑟 } . Now, assume there existsA ∈ B′ \ {{𝑘, . . . , 𝑙 − 1}}, 𝑧 ∈ Z such that

𝑎A,𝑧 > 𝑎{𝑙,...,𝑟 },𝑧 . Since, by assumption, we have that 𝑎{𝑘,...,𝑙−1},𝑧 ≤ 𝑎{𝑙,...,𝑟 },𝑧 , it should hold that 𝑎{𝑘,...,𝑙−1},𝑧 < 𝑎A,𝑧 , which contradicts

with the assumption that B′ ∈ B𝑘,𝑙−1, leading to a contradiction. This proves that B ∈ B𝑙,𝑟 .

Lemma D.6. Let B = B′ ∪ {{𝑙, . . . , 𝑟 }} ∈ B𝑙,𝑟 and B′ ∈ B𝑘,𝑙−1 with 𝑘 < 𝑙 . Then, it must hold that 𝑎{𝑘,...,𝑙−1},𝑧 ≤ 𝑎{𝑙,...,𝑟 },𝑧 ∀𝑧 ∈ Z.
11
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Proof. Since B′ ∈ B𝑘,𝑙−1, we know that {𝑘, . . . , 𝑙 − 1} ∈ B′
. Moreover, it follows from Proposition 3.3 that 𝑓B is monotone with respect

to 𝑓 and hence, since 𝑘 < 𝑙 and 𝑘 ≁B 𝑙 , we have that 𝑎{𝑘,...,𝑙−1} < 𝑎{𝑙,...,𝑟 } . Further, since B ∈ B𝑙,𝑟 , we have that, for every A,A′ ∈ B such

that 𝑎A < 𝑎A′ , it holds that 𝑎A,𝑧 ≤ 𝑎A′,𝑧 for all 𝑧 ∈ Z. Thus, it also holds that 𝑎{𝑘,...,𝑙−1},𝑧 ≤ 𝑎{𝑙,...,𝑟 },𝑧 for all 𝑧 ∈ Z.

□

D.5 Proof of Theorem 4.2
To prove that Algorithm 1 returns the optimal partition B∗

, we just need to prove that, for each 𝑙, 𝑟 ∈ {1, . . . , 𝑛}, the partition B𝑙,𝑟 the

algorithm finds is optimal, i.e., B𝑙,𝑟 = B∗
𝑙,𝑟
. In what follows, we prove this by induction.

For the base cases, we have that B1,𝑟 = {{1, . . . , 𝑟 }} are clearly optimal since B1,𝑟 only contains {{1, . . . , 𝑟 }} for all 𝑟 ∈ {1, . . . , 𝑛}.
As the induction hypothesis, assume that, for any 𝑙 ′ < 𝑙 and 𝑟 ′ < 𝑟 , the partition B𝑙 ′,𝑟 ′ the algorithm finds is optimal. Moreover,

let S𝑙,𝑟 =
{
𝑘 | 𝑘 < 𝑙, 𝑎{𝑘,...,𝑙−1},𝑧 ≤ 𝑎{𝑙,...,𝑟 },𝑧 ∀𝑧 ∈ Z

}
. Then, for (𝑙, 𝑟 ), we need to show that B𝑙,𝑟 = B𝑘∗,𝑙−1 ∪ {{𝑙, . . . , 𝑟 }}, with 𝑘∗ =

argmax𝑘∈S𝑙,𝑟

��B𝑘,𝑙−1
��
, is optimal.

To this end, we first show that 𝑓B𝑙,𝑟
is within-group monotone on ∪𝑖≤𝑟X𝑖 , i.e., B𝑙,𝑟 ∈ B𝑙,𝑟 . We have that, by the induction hypothesis,

B𝑘∗,𝑙−1 ∈ B𝑘∗,𝑙−1 and, by definition, 𝑘∗ ∈ S𝑙,𝑟 . Then, it follows directly from Lemma 4.1 that 𝑓B ∈ B𝑙,𝑟 . Next, we show that B𝑙,𝑟 =

argmaxB∈B𝑙,𝑟
|B|. Using again Lemma 4.1, we have that, for any B ∈ B𝑙,𝑟 , it holds that B = B′ ∪ {{𝑙, . . . , 𝑟 }}, with B′ ∈ B𝑘,𝑙−1, for

some 𝑘 ∈ S𝑙,𝑟 . As a result, since |B′ ∪ {{𝑙, . . . , 𝑟 }}| = |B′ | + 1, it suffices to find B′ = argmaxB′′∈∪𝑘∈S𝑙,𝑟 B𝑘,𝑙−1 |B
′′ |. Now, by the induction

hypothesis, we know that, for each B𝑘,𝑙−1, B𝑘,𝑙−1 is the optimal partition. Then, since 𝑘∗ = argmax𝑘∈S𝑙,𝑟

��B𝑘,𝑙−1
��
, we can conclude that

B𝑙,𝑟 is optimal.

D.6 Proof of Proposition B.1
We prove by contradiction. Assume there exist violations of within-group monotonicity. We first define the nearest violating triplet, (𝑙, 𝑟 , 𝑧),
as:

(𝑙, 𝑟 , 𝑧) = argmin

{ (𝑖, 𝑗,𝑧 ) | 𝑖, 𝑗∈Range(𝑓B ),𝑖< 𝑗,𝑧∈Z}
| 𝑗 − 𝑖 | such that 𝑎A𝑖 ,𝑧 > 𝑎A 𝑗 ,𝑧

If 𝑟 = 𝑙 + 1 then it contradicts with the assumption that no monotonicity violations occur between adjacent cells. If 𝑟 ≠ 𝑙 + 1, there exists

𝑖 ∈ Range(𝑓B ) such that 𝑙 ≤ 𝑖 ≤ 𝑟 and it does not happen simultaneously that 𝑖 = 𝑙 and 𝑖 = 𝑟 . Then it should hold that 𝑎A𝑙 ,𝑧 ≤ 𝑎A𝑖 ,𝑧 ≤ 𝑎A𝑟 ,𝑧

since otherwise either of (𝑙, 𝑖, 𝑧) or (𝑖, 𝑟 , 𝑧) is the nearest violating triplet. In this case however, 𝑎A𝑙 ,𝑧 ≤ 𝑎A𝑟 ,𝑧 which is a contradiction with it

being a violating triplet. As a result, no such triplet can exist and 𝑓B is within-group monotone.

D.7 Proof of Lemma C.2
We first prove the sufficient condition, i.e., we prove that, given any B ∈ B𝑟 , if it holds that 𝑓B is within-group calibrated on ∪𝑖≤𝑟X𝑖 then

∃𝑙 < 𝑟 such that B\ {{𝑙, . . . , 𝑟 }} ∈ B𝑙−1 and 𝑓B\{{𝑙,...,𝑟 }} is within-group calibrated on ∪𝑖≤𝑙−1X𝑖 and 𝑎{𝑙,...,𝑟 },𝑧 = 𝑎{𝑙,...,𝑟 } for all 𝑧 ∈ Z. Let

B′ = B \ {{𝑙, . . . , 𝑟 }}. Since B covers {1, . . . , 𝑟 }, then it holds that B′
covers {1, . . . , 𝑙 − 1} and hence B′ ∈ B𝑙−1. Since B′ ⊂ B and 𝑓B is

within-group calibrated on ∪𝑖≤𝑟X𝑖 , then it holds that 𝑓B′ is within-group calibrated on ∪𝑖≤𝑙−1X𝑖 . Finally, since {𝑙, . . . , 𝑟 } ∈ B, it also holds

that 𝑎{𝑙,...,𝑟 },𝑧 = 𝑎{𝑙,...,𝑟 } .
Next, we prove the necessary condition, i.e., given any B ∈ B𝑟 , if ∃𝑙 < 𝑟 such that B\ {{𝑙, . . . , 𝑟 }} ∈ B𝑙−1 and 𝑓B\{{𝑙,...,𝑟 }} is within-group

calibrated on ∪𝑖≤𝑙−1X𝑖 and 𝑎{𝑙,...,𝑟 },𝑧 = 𝑎{𝑙,...,𝑟 } ∀𝑧 ∈ Z then 𝑓B is within-group calibrated on ∪𝑖≤𝑟X𝑖 . We need to show that, for every

A ∈ B, it holds that 𝑎A,𝑧 = 𝑎A . Let B′ = B \ {{𝑙, . . . , 𝑟 }}. For every 𝑧 ∈ Z, it holds by assumption that 𝑎A,𝑧 = 𝑎A ∀A ∈ B′
and

𝑎{𝑙,...,𝑟 },𝑧 = 𝑎{𝑙,...,𝑟 } . As a result, 𝑓B is within-group calibrated on ∪𝑖≤𝑟X𝑖 .

D.8 Proof of Theorem C.3
To prove that Algorithm 3 returns the optimal B∗

cal
, if a solution exists, we just need to prove that, for every 𝑟 ∈ {1, . . . , 𝑛}, the partition

B
cal,𝑟 the algorithm finds is optimal, i.e., B

cal,𝑟 = B∗
cal,𝑟

. In what follows, we prove this by induction.

For the base case (𝑟 = 1), we have that B
cal,1 = {{𝑎1}} iff, for all 𝑧 ∈ Z with 𝜌𝑧 | 1 > 0, it holds that 𝑎1,𝑧 = 𝑎1. This is clearly

optimal since B1 only contains {{𝑎1}}. Otherwise, it holds that Bcal,1 = ∅. As the induction hypothesis, assume that, for any 𝑟 ′ < 𝑟 ,

the partition B
cal,𝑟 ′ the algorithm finds is either the optimal partition or, if there is no solution, an empty partition. Moreover, let S𝑟 ={

𝑖 ∈ {2, . . . , 𝑟 } | 𝑎{𝑖,...,𝑟 },𝑧 = 𝑎{𝑖,...,𝑟 } ∀𝑧 ∈ Z
}
. Then, for 𝑟 , we distinguish between two cases. If B

cal,𝑟 ′ is empty for all 𝑟 ′ < 𝑟 , we again

distinguish between two cases. If 𝑎{1,...,𝑟 } ≠ 𝑎{1,...,𝑟 },𝑧 ∀𝑧 ∈ Z, it means that B
cal,𝑟 = {{1, . . . , 𝑟 }} is the only partition in B𝑟 that is within-

group calibrated and thus it is optimal. Otherwise, we can conclude that no partition B ∈ B𝑟 is within-group calibrated and thus B
cal,𝑟 = ∅.

Now, if B
cal,𝑟 ′ is not empty for some 𝑟 ′ < 𝑟 , we need to show that B

cal,𝑟 = B
cal,𝑘∗−1 ∪ {{𝑘∗, . . . , 𝑟 }}, with 𝑘∗ = argmax𝑘∈S𝑟

|B
cal,𝑘−1 |, is

optimal.

To this end, we first show that 𝑓Bcal,𝑟
is within-group calibrated on ∪𝑖≤𝑟X𝑖 . Using the induction hypothesis and the fact that 𝑘∗ ≤ 𝑟 , we

have that B
cal,𝑘∗−1 is the optimal partition in B𝑘∗−1. As a result, it follows from Lemma C.2 that 𝑓Bcal,𝑟

is within-group calibrated on ∪𝑖≤𝑟X𝑖 .

Next, we show that B
cal,𝑟 = argmaxB∈B𝑟

|B| among those partitions B such that 𝑓B is within-group calibrated. Using again Lemma C.2,

12
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we have that, for any B such that 𝑓B is within-group calibrated, it holds that B = B′ ∪ {{𝑘, . . . , 𝑟 }}, with B′ ∈ B𝑘−1, for some 𝑘 ∈ S𝑟 .
As a result, since |B| = |B′ | + 1, it suffices to find B′ = argmaxB′′∈∪𝑘∈S𝑟 B𝑘−1 |B

′′ | such that 𝑓B′′ is within-group calibrated. Now, by the

induction hypothesis, we know that, for each B𝑘−1, B𝑘−1 is the optimal partition. Then, since 𝑘∗ = argmax𝑘∈S𝑟

��B
cal,𝑘−1

��
, we can conclude

that B
cal,𝑟 is optimal.

D.9 Proof of Proposition C.4
We prove by contradiction. Assume there exists a B ∈ B such that 𝑓B is within-group calibrated. Then, for every A ∈ B, it must hold that

𝑎A,𝑧 = 𝑎A,𝑧′ = 𝑎A . Consider an arbitrary cell A ∈ B. We have that

𝑎A,𝑧 =

∑
𝑗∈A 𝜌 𝑗𝜌𝑧 | 𝑗𝑎 𝑗,𝑧∑
𝑗∈A 𝜌 𝑗𝜌𝑧 | 𝑗

(𝑖 )
=

∑
𝑗∈A 𝜌 𝑗𝜌𝑧′ | 𝑗𝑎 𝑗,𝑧∑
𝑗∈A 𝜌 𝑗𝜌𝑧′ | 𝑗

(𝑖𝑖 )
<

∑
𝑗∈A 𝜌 𝑗𝜌𝑧′ | 𝑗𝑎 𝑗,𝑧′∑

𝑗∈A 𝜌 𝑗𝜌𝑧′ | 𝑗
= 𝑎A,𝑧′

where (𝑖) follows from the fact that 𝜌𝑧 | 𝑖 = 𝜌𝑧′ | 𝑖 for all 𝑖 ∈ Range(𝑓 ) and (𝑖𝑖) follows from the fact that, by assumption, 𝑎𝑖,𝑧 < 𝑎𝑖,𝑧′ for all

𝑖 ∈ {1, . . . , 𝑛}. As an immediate consequence, we have that 𝑎A,𝑧 < 𝑎A < 𝑎A,𝑧′ , contradicting the within-group calibration property.
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Figure 3: Size of the partitions Bpav, B∗ and B∗
cal returned by Algorithms 2, 1 and 3, respectively (higher is better).
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(b) Race code (𝑍 )

Figure 4: Size of the shortlists created using both the original classifier 𝑓 and the modified classifiers 𝑓B∗ , 𝑓Bpav and 𝑓B∗
cal

for
𝑘 = 5 (lower is better).

E ADDITIONAL EXPERIMENTS USING SURVEY DATA
First note that, since we find that, in most experiments, no within-group calibrated classifier exists, we allow 𝑓B∗

cal

to be within-group

𝜖-calibrated10 within Algorithm 3 and use binary search to find the smallest 𝜖 ∈ (0, 1) such that 𝑓B∗
cal

exists. Refer to Appendix E.3 for

additional experiments on within-group 𝜖-calibration.

E.1 Comparison of Partitions and Shortlist Sizes of Induced Screening Classifiers Corresponding to
Algorithms 1, 2 and 3

Algorithm 1 consistently provides larger partitions, which result in more fine-grained classifiers and smaller shortlists, than
Algorithms 2 and 3. We experiment with several screening classifiers 𝑓 with a varying number of bins 𝑛 and compare the size of the

partitions B provided by each of the algorithms, i.e., the number of bins of the modified classifiers 𝑓B . Figure 3 shows that the optimal

partition B∗
is always greater in size than the partitions B∗

cal
and Bpav. Moreover, it also shows that, as 𝑛 increases, the growth in the size of

the partitions B∗
and B𝑝𝑎𝑣 diminishes because the occurrence of within-group unfairness increases, as shown in Figure 2. Further, we use

both the original classifier 𝑓 and the modified classifiers 𝑓B∗ , 𝑓Bpav
and 𝑓B∗

cal

to shortlist the minimum number of individuals among those in

each of the simulated test pools {B𝑖
pool

} such that, in expectation, there are at least 𝑘 qualified shortlisted individuals per pool. To this end,

for each test pool and classifier, we sort the candidates in decreasing order with respect to the corresponding quality score and, starting from

the first, we keep shortlisting individuals in order until the sum of the quality scores reaches 𝑘 (Appendix, A.3, [2]). Figure 4 shows that the

shortlists created using 𝑓B∗ are consistently smaller than those created using 𝑓Bpav
and 𝑓B∗

cal

for 𝑘 = 5. Moreover, it also shows that the price

to pay for achieving within-group monotonicity, i.e., the difference in size between the shortlists created using 𝑓 and 𝑓B∗ , is small. We found

qualitatively similar results for other 𝑘 values. Appendix E.2 takes a closer look at the (group conditional) score values of 𝑓 , 𝑓B∗ , 𝑓Bpav
and

𝑓B∗
cal

.

E.2 Screening Classifiers Induced by the Partitions Found by Algorithms 1, 2 and 3
In this section, we take a closer look at all the quality score values 𝑎 = Pr(𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎) and group conditional score values

𝑎𝑧 = Pr(𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎, 𝑍 = 𝑧) of both the original classifier 𝑓 and the modified classifiers 𝑓B induced by the partitions B found by

10
Given a set of groups Z, a classifier 𝑓 is within-group 𝜖-calibrated iff, for every 𝑧 ∈ Z and 𝑎 ∈ Range(𝑓 ) such that Pr(𝑍 = 𝑧 | 𝑓 (𝑋 ) = 𝑎) > 0, it holds that |Pr(𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎,𝑍 = 𝑧 ) − 𝑎 | ≤ 𝜖 .
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Algorithms 2, 1 and 3. Figure 5 summarizes the results for one experiment with a classifier 𝑓 with 𝑛 = 15, which reveal several interesting

findings.
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Figure 5: Quality score values 𝑎 = 𝑃 (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎) and group conditional quality score values 𝑎𝑧 = 𝑃 (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎, 𝑍 = 𝑧) of
the screening classifier 𝑓 and the modified classifiers 𝑓Bpav , 𝑓B∗ , and 𝑓B∗

cal
induced by the partitions found by Algorithms 2, 1

and 3, respectively. In the first and last rows, the hatched bars indicate within-group monotonicity violations and, in the last
row, we report the smallest 𝜖 value such that a within-group 𝜖-calibrated classifier 𝑓B∗

cal
exists.

As expected, 𝑓B∗ and 𝑓Bpav
are within-group monotone and 𝑓B∗ is more fine-grained than 𝑓Bpav

, i.e., |B∗ | ≥ |Bpav |. However, the minimum

value of 𝜖 such that 𝑓B∗
cal

exists is not always low enough for 𝑓B∗
cal

to be within-group monotone. Moreover, we find that, for 𝑓 , 𝑓B∗ and 𝑓Bpav
,

the difference among group conditional score values 𝑎𝑧 for a given quality score values 𝑎 is often significant. As a result, one should be

cautious about comparing candidates from different groups 𝑧 and instead utilize group-dependent decision thresholds [2] to implement

more equitable hiring practices such as the Rooney rule [31], which requires that, when hiring for a given position, at least one (or more)

candidate(s) from each minority group should be interviewed. In this context, it is also worth noting that, while using 𝑓B∗
cal

would mitigate

such differences, our results show that this would reduce dramatically the granularity of the predictions. We found qualitatively similar

results for different 𝑛 values.

E.3 Additional Experiments On Within-Group 𝜖-Calibration
In this section, we investigate how the smallest 𝜖 such that a within-group 𝜖-calibrated classifier 𝑓B∗

cal

exists varies against the number of

bins 𝑛 of the screening classifier 𝑓 . Figure 6 shows that, for each set of groups Z, 𝜖 remains relatively constant with respect to 𝑛, however,
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the greater the difference across group conditional quality scores 𝑎𝑧 = 𝑃 (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎, 𝑍 = 𝑧), the greater the value of 𝜖 that is needed to

obtain a within-group 𝜖-calibrated classifier, as one may have perhaps expected.
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Figure 6: Minimum value of 𝜖 such that a within-group 𝜖-calibrated 𝑓B∗

cal
exists against the number of bins 𝑛 of the screening

classifier 𝑓 .
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Figure 8: Quality of the partitions Bpav, B∗, and B∗
cal returned by Algorithms 2, 1 and 3, respectively, for screening classifiers 𝑓

with an increasing number of bins 𝑛. Panel (a) shows the size |B| of the partitions provided by each algorithm (higher is better).
Panel (b) shows the size of the shortlists created using the classifiers 𝑓B induced by each partition B (lower is better).
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Figure 9: Quality score values 𝑎 = 𝑃 (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎) and group conditional quality score values 𝑎𝑧 = 𝑃 (𝑌 = 1 | 𝑓 (𝑋 ) = 𝑎, 𝑍 = 𝑧) of
the screening classifier 𝑓 and the modified classifiers 𝑓Bpav , 𝑓B∗ , and 𝑓B∗

cal
induced by the partitions found by Algorithms 2, 1

and 3, respectively. In the first row, the hatched bars indicate within-group monotonicity violations and, in the last row, we
report the smallest 𝜖 value such that a within-group 𝜖-calibrated classifier 𝑓B∗

cal
exists.
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