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ABSTRACT
Collective classification utilizes network structure information via
label propagation to improve prediction accuracy for node classifica-
tion tasks. Because thesemodels use information from labeled nodes
which often contain historical bias, they may result in predictions
that are biased w.r.t. the sensitive attributes of nodes. Throughout
inference, this bias may even be amplified due to propagation. De-
spite past and ongoing research on fair classification, research to
ensure fair collective classification still remains unexplored. In this
paper, we present a fair collective classification (FairCC) frame-
work and formulate various methodologies based on reweighting,
threshold adjustment, and postprocessing to achieve fair prediction.
Experiments on semi-synthetic datasets demonstrate the effective-
ness of the proposed heuristics in significantly reducing prediction
bias.
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1 INTRODUCTION
Traditional machine learning models used for classification are of-
ten founded on the basis of an underlying assumption that the data
is identically and independently distributed (iid). Imposing the same
assumption on networked data may lead to loss of useful informa-
tion regarding entities’ influence on each others’ attributes/labels.
Relational machine learning and collective inference techniques
can be applied in such cases for within-network classification which
is the process of estimating labels for entities linked to other entities
that may or may not be labeled[13].

Collective classification (CC) utilizes network structure and un-
derlying network properties such as label correlation to improve
prediction accuracy. This type of correlation is formally defined by
the principle of homophily which states that contact between similar
people occurs at a higher rate and can be observed in real-life net-
works with varying strength. For example, in a social network, two
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users with a mutual connection are more likely to have the same po-
litical affiliation compared to two random users. Relational learning
models either learn or assume the presence of such homophily and
propagate known entity labels throughout the network to make
predictions for unlabeled entities. As the unlabeled entities may
also have connections among themselves, implementing relational
models in a collective manner allows the model to estimate the
interrelated values simultaneously.

In recent years, researchers have been increasingly and right-
fully concerned with making automated decision making systems
socially and legally fair to prevent discrimination [6, 9]. Although,
collective classification may improve prediction accuracy by uti-
lizing homophily, it is imperative to analyze it through the lens
of social inequality to ensure fair predictions for all demographic
groups. DiMaggio et al. [3] studied social networks discrimination
from a social science perspective and theorized that network effects
can amplify discrimination in social networks by compounding
initial endowments at the individual-level through normative influ-
ence. They suggest that such amplification occurs in homophilous
networks where socio-economic characteristics are positively cor-
related with valuable resources, and an entity is influenced by its
network peers to adopt similar practices. Initial endowment in
social networks is analogous to historical bias found in most fair
learning datasets. Furthermore, CC achieves better performance for
networks with high label homophily[19]. It is thus possible for CC
models to result in improved performance with seemingly accurate
predictions that are biased against certain groups.

To address this issue, we study the problem of fair label propa-
gation and inference. We empirically verify that CC can improve
prediction accuracy but also result in unfair estimates. To mitigate
the resulting bias, we develop a fair collective classification (FairCC)
framework and incorporate various heurstic methodologies within
it including an iterative reweighting method based on[10] and an
iterative threshold adjustment method based on the covariance
measure of unfairness[17], and postprocessing techniques [10, 11].

2 PRELIMINARIES
In this section, we describe our formulation for collective classifi-
cation on an attributed graph. Throughout this paper, calligraphic
fonts (e.g.,X), bold uppercase letters (e.g., X), bold lowercase letters
(e.g., x), and normal lowercase letters (e.g., 𝑥 ) represent sets, matri-
ces, vectors, and scalars, respectively. For any matrix, e.g., X, we
use x𝑖 and x., 𝑗 to denote its 𝑖-th row and 𝑗-th column respectively.
Due to space constraint, we include notation table, pseudo code for
all algorithms, and discussion of related work in the Appendix.

2.1 Collective Classification
We extend the univariate formulation of collective classification
[13] to include sensitive and non-sensitive attributes. The input is
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an unweighted, undirected, and attributed graph G = (V, E,X, 𝑌 )
whereV is a set of 𝑁 nodes, E is a set of edges that connect node
pairs in V , X represents the node feature matrix, and 𝑌 denotes
node labels. Each node 𝑣𝑖 is defined by its feature vector x𝑖 ∈ R𝑑
which includes a sensitive attribute 𝑠𝑖 . We use x𝑖 \ 𝑠𝑖 to denote its
non-sensitive features. Node label 𝑦𝑖 is known only for a subset of
nodes inV . We denote this subset of nodes asV𝐾 and their corre-
sponding attributes as X𝐾 , sensitive attributes as 𝑆𝐾 , and labels as
𝑌𝐾 . The remaining nodes are denoted asV𝑈 and corresponding
notations follow accordingly. The task then is to simultaneously
infer the values 𝑦𝑖 for 𝑣𝑖 ∈ V𝑈 or a probability distribution over
those label values. We use 𝑌 to denote the predicted labels and Ĉ
to denote a matrix containing vectors of label probabilities for each
node inV𝑈 . For simplicity, we assume both 𝑠 and 𝑦 to be binary.

The CC framework comprises three components: local classifier,
relational classifier, and collective inference discussed as follows.

2.1.1 Local Classifier. The local classifier 𝑓𝐿 estimates label prob-
abilities 𝑃 (𝑦𝑖 |x𝑖 ) using only node attributes x𝑖 . The classifier is
trained with V𝐾 to obtain initial labels/estimates for V𝑈 . The
relational classifier uses these estimates to estimate probabilities
for nodes whose neighborhood contains nodes fromV𝑈 .

2.1.2 Relational Classifier. The relational classifier 𝑓𝑅 leverages
graph structure to directly estimate unknown node labels or a
probability distribution over them. Instead of estimating the full
joint probability 𝑃 (𝑌𝑈 |G), the learning process is made simpler
with a first-order Markov assumption: 𝑃 (𝑦𝑖 |G) = 𝑃 (𝑦𝑖 |N𝑖 ) where
N𝑖 defines a set of 1-hop neighbors of node 𝑣𝑖 such that 𝑃 (𝑦𝑖 |N𝑖 ) is
independent ofV \N𝑖 [13]. Then a relational model based on N𝑖
can be used to estimate 𝑦𝑖 . We describe two such relational models
used in this paper below.

Weighted-Vote Relational Neighbor (WVRN) [13] is the simplest
relational classifier; it does not learn any network properties but
assumes the existence of homophily in order to estimate node
probabilities by setting a node’s prediction to be the majority label
of its neighbors. For each 𝑣𝑖 ∈ V𝑈 , WVRN estimates 𝑃 (𝑦𝑖 |N𝑖 ) as
the mean of the label probabilities of the entities in N𝑖 .

𝑃 (𝑦𝑖 = 𝑐 |N𝑖 ) =
1
𝑍

∑
𝑣𝑗 ∈N𝑖

𝑃 (𝑦 𝑗 = 𝑐 |N𝑗 ), (1)

where 𝑍 is the usual normalizer and we omit the edge weight term
as we only consider unweighted edges.

Relational Bayes (NBR) also referred to as network-only Bayes
[13] uses multinomial naive Bayesian classification based on the
classes of 𝑣𝑖 ’s neighbors.

𝑃 (𝑦𝑖 = 𝑐 |N𝑖 ) =
𝑃 (N𝑖 |𝑦𝑖 = 𝑐)𝑃 (𝑦𝑖 = 𝑐)

𝑃 (N𝑖 )
. (2)

𝑃 (N𝑖 ) is the same for all classes; normalization across classes
allows us to avoid explicitly computing it. 𝑃 (𝑦𝑖 = 𝑐) is simply the
class prior. Assuming independence between all neighbor classes
of 𝑣𝑖 , the neighborhood class distribution, 𝑃 (N𝑖 |𝑦𝑖 = 𝑐), is given as:

𝑃 (N𝑖 |𝑦𝑖 = 𝑐) = 1
𝑍

∏
𝑣𝑗 ∈N𝑖

𝑃 (𝑦 𝑗 = 𝛾 |𝑦𝑖 = 𝑐) (3)

where 𝑍 is a normalizing constant and 𝛾 is an arbitrary neighbor
label. We compute 𝑃 (𝑦 𝑗 = 𝛾 |𝑦𝑖 = 𝑐) fromV𝐾 as:

𝑃 (𝑦 𝑗 = 𝛾 |𝑦𝑖 = 𝑐) =

∑
𝑣𝑖 ∈V𝐾

[
I(𝑦𝑖 = 𝑐) ∑

𝑣𝑗 ∈N𝑖\V𝑈
I(𝑦 𝑗 = 𝛾)

]
∑
𝛾 ′

∑
𝑣𝑖 ∈V𝐾

[
I(𝑦𝑖 = 𝑐) ∑

𝑣𝑗 ∈N𝑖\V𝑈
I(𝑦 𝑗 = 𝛾 ′)

] (4)

where I refers to an indicator function. Laplace smoothing is applied
to account for possible zeros in the estimation of 𝑃 (𝑦 𝑗 = 𝛾 |𝑦𝑖 = 𝑐).

2.1.3 Collective Inference. 𝑓𝑅 estimates 𝑣𝑖 ’s label based on its neigh-
borhood N𝑖 . However, N𝑖 may contain nodes fromV𝐾 as well as
V𝑈 , i.e., N𝑖 = N𝐾

𝑖
∪ N𝑈

𝑖
. The labels for nodes in N𝑈

𝑖
are also

estimated using the 𝑓𝑅 . Then, just as N𝑖 influences the estimate
of 𝑦𝑖 , 𝑦𝑖 also influences the estimate of the labels of nodes in N𝑈

𝑖

since 𝑣𝑖 is included in the neighborhood of each node 𝑣 𝑗 ∈ N𝑈𝑖 .
Collective inference methods can be implemented in this case to
simultaneously estimate these interdependent values.

Relaxation Labeling [13] is a collective inference method that
performs an iterative update for the probability estimates of all
𝑣𝑖 ∈ V𝑈 at step 𝑡 + 1 based on estimations obtained from the 𝑓𝑅 at
step 𝑡 . The update step is formulated as:

ĉ(𝑡+1)
𝑖

← 𝛽 (𝑡+1) · 𝑓𝑅 (𝑣𝑖 ) (𝑡 ) + (1 − 𝛽 (𝑡+1) ) · ĉ(𝑡 )𝑖 (5)

where, ĉ𝑖 is a vector containing 𝑓𝑅 ’s estimates of 𝑃 (𝑦𝑖 |N𝑖 ), 𝛽0 = 𝑘 ,
𝛽 (𝑡+1) = 𝛼𝛽 (𝑡 ) , 𝑘 is a constant between 0 and 1, and 𝛼 is a decay
constant.We refer readers to Algorithm 1 in Appendix for an overall
view of the CC framework.

2.2 Fairness Metrics
For evaluating bias in CC, we use statistical parity [6], a widely
accepted notion of group fairness measured in terms of the binary
sensitive attribute 𝑠 ∈ {0,1}, and the binary predicted label 𝑦 ∈ {0,1}.
Statistical parity requires the predictions be independent of the
sensitive attribute, i.e., 𝑦 ⊥ 𝑠 . It can be quantitatively evaluated as:

Δ𝑆𝑃 = |𝑃 (𝑦 |𝑠 = 0) − 𝑃 (𝑦 |𝑠 = 1) | (6)

Other popular measures of fairness include equal opportunity
[9], counterfactual fairness [12], individual fairness [6] whose ex-
ploration we leave for future work.

3 FAIR COLLECTIVE CLASSIFICATION
Fairness in CC can be evaluated at three different stages throughout
the process: local fairness Δ𝑓𝐿 for the predictions obtained from
the 𝑓𝐿 , relational fairness Δ𝑓𝑅 for predictions obtained from 𝑓𝑅 , and
aggregated fairness Δ𝐶 for the final predictions. Our goal ultimately
is to ensure fairness guarantee in Δ𝐶 .

One naive way of formulating FairCC is to ensure fairness in
initial estimates for V𝑈 computed by 𝑓𝐿 . Since these fair initial-
izations are propagated throughout the graph, it is reasonable to
expect that imposing Δ𝑓𝐿 -fairness in the 𝑓𝐿 could help lead to over-
all fairness. However, a fair 𝑓𝐿 cannot guarantee absolute fairness
inV𝑈 . Moreover, the predictions from fair local classifier are used
by the CC model only during the first iteration of inference and
cannot ensure Δ𝑓𝑅 -fairness in subsequent iterations. We empirically
validate this claim in Section 4.
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As bias amplification mainly occurs in 𝑓𝑅 via propagation; en-
suring Δ𝑓𝑅 -fairness at every iteration of inference can lead to Δ𝐶 -
fairness. We propose two methodologies that make 𝑓𝑅 predictions
fair so that estimates obtained in every iteration are relatively fair.

3.1 Fair Collective Classification via Node
Reweighting

The node reweighting (NR) method is based on the reweighting
method [10] which aims to mitigate historical bias in data through
preprocessing of the training data to make it fair and balanced. We
propose to incorporate this reweighting technique in the CC model
during each iterative update to assign weights to nodes w.r.t their 𝑠
and 𝑦 values. Instead of reweighing just the training set, we derive
these weights for all nodes in the graph by using true labels for
nodes inV𝐾 and predicted labels inV𝑈 . This allows the computed
weights to capture the historical bias inV𝐾 as well as propagated
bias inV𝑈 . The calculated weights are then propagated throughout
the graph along with the inferred probabilities/labels.

Algorithm 2 in Appendix shows the pseudo-code of our FairCC
via NR approach. We start by computing weights based on the
known labels and predicted labels obtained from 𝑓𝐿 .

𝑤
(0)
𝑐,𝑎 :=

𝑃 (𝑦 = 𝑐)
𝑃 (𝑦 = 𝑐 |𝑠 = 𝑎) (7)

Then for each iteration of inference, we derive weights using
V𝐾 labels, andV𝑈 predictions from previous iteration until the
predictions converge to a fair and stable state. Since the inference
procedure incorporates simulated annealing in the update step to
ensure label convergence[13], we perform a similar update for the
weights by allowing the weights from the previous iteration to have
the same amount of influence as the probability estimates from the
previous iteration.

𝑤
(𝑡+1)
𝑐,𝑎 = 𝛽 (𝑡+1) · 𝑃 (𝑦 = 𝑐) (𝑡 )

𝑃 (𝑦 = 𝑐 |𝑠 = 𝑎) (𝑡 )
+ (1 − 𝛽 (𝑡+1) ) ·𝑤 (𝑡 )𝑐,𝑎 (8)

We leverage network homophily and apply these weights in the
𝑓𝑅 such that positively labeled neighbor nodes from the privileged
group have a smaller influence than negatively labeled neighbor
nodes from the same group. The opposite effect is true for neigh-
bor nodes from the unprivileged group. We further limit this in-
fluence by using the target node’s own sensitive attribute-based
weight. For networks where intra-group edges are denser than
inter-group edges, the weights have the effect of increasing the
positive predicted probability of nodes in the unprivileged group
while decreasing that of the privileged group.

WVRN incorporates the computed weights by applying them
directly to each neighbor’s probability and also the node’s own
overall probability.

𝑃 (𝑦𝑖 = 𝑐 |N𝑖 ) =
𝑤𝑐,𝑠𝑖

𝑍

∑
𝑣𝑗 ∈N𝑖

𝑃 (𝑦 𝑗 = 𝑐 |N𝑗 )𝑤𝑐,𝑠 𝑗 (9)

where 𝑍 is the usual normalizer,𝑤𝑐,𝑠 𝑗 is the weight due to neighbor
𝑣 𝑗 ’s sensitive attribute and label to be estimated, and 𝑤𝑐,𝑠𝑖 is the
weight due to node 𝑣𝑖 ’s own sensitive attribute and the label to be
estimated. We normalize the weights before using them to compute
the probability estimates.

We similarly modify the NBR classifier by using the node weights
according to its own and its neighbors’ known/ predicted labels
and sensitive attributes.

𝑃 (𝑦𝑖 = 𝑐 |N𝑖 ) = 𝑃 (𝑦𝑖 = 𝑐) 1
𝑍
(
∏
𝑣𝑗 ∈N𝑖

(𝑃 (𝑦 𝑗 = 𝛾 |𝑦𝑖 = 𝑐))𝑤𝛾,𝑠 𝑗 )𝑤𝑐,𝑠𝑖

(10)
where 𝑤𝛾,𝑠 𝑗 is the weight due to neighbor 𝑣 𝑗 ’s known/predicted
label and sensitive attribute. We scale the values between positive
constants 𝑎 and 𝑏 such that 1 ≤ 𝑎 < 𝑏 before applying them.

3.2 Fair Collective Classification via Threshold
Adjustment

The threshold adjustment (TA) heuristic derives fair classification
thresholds for each group defined by the sensitive attribute. In our
case, we derive two fair thresholds: 𝜏+ for the privileged group and
𝜏− for the unprivileged group. We compute these fair thresholds in
every iteration so that the predictions obtained by applying these
thresholds are relatively fair for that iteration.

The threshold adjustment method is based on the covariance-
based measure of unfairness [17], which quantifies the dependence
between 𝑆 and 𝑌 as a measure of covariance between the 𝑆 and
the signed distance of the node’s feature vector from the decision
boundary for linear classifiers. Minimizing this covariance measure
then becomes analogous to minimizing the Δ𝑆𝑃 .

The decision boundary for CC models is analogous to the op-
timal decision function applied over the predicted probabilities.
The decision function in this case assigns node labels based on the
threshold value 𝜏 which is generally set to be 0.5. Unfairness can
then be computed as the covariance between the sensitive attributes
s and the difference in the predicted positive class probability ĉ.,1
(assuming 𝑦 = 1 to be the advantaged outcome) and the threshold
value 𝜏 ,

Cov =
1

𝑛(V𝑈 )

∑
𝑣𝑖 ∈V𝑈

(𝑠𝑖 − `s) · (𝑐𝑖,1 − 𝜏) (11)

where 𝑛(V𝑈 ) refers to the number of nodes inV𝑈 and `s is the
mean of sensitive attribute values for nodes inV𝑈 . Since we derive
two different thresholds for each group defined by the sensitive
attribute, we decompose Eq. 11 as:

Cov =
1

𝑛(V𝑈 )

[ ∑
𝑣𝑖 ∈V𝑈 :𝑠𝑖=+

(𝑠𝑖−`s)·(𝑐𝑖,1−𝜏+)+
∑

𝑣𝑖 ∈V𝑈 :𝑠𝑖=−
(𝑠𝑖−`s)·(𝑐𝑖,1−𝜏−)

]
(12)

Intuitively we can reason that the optimal fair threshold for the
privileged group should be greater than the unfair threshold and
the optimal fair threshold for the unprivileged group should be
lesser than the unfair threshold, i.e., 𝜏∗+ > 𝜏+ and 𝜏∗− < 𝜏−. Let 𝜖 be
the offset value needed to derive the fair thresholds; 𝜏∗+ = 𝜏+ + 𝜖
and 𝜏∗− = 𝜏− − 𝜖 . We can derive the value of this offset term using
Eq. 12 such that the computed covariance becomes 0.

𝜖 =
−Cov · 𝑛(V𝑈 )∑

𝑣𝑖 ∈V𝑈 :𝑠𝑖=+
(𝑠𝑖 − `s) −

∑
𝑣𝑖 ∈V𝑈 :𝑠𝑖=−

(𝑠𝑖 − `s)
(13)

We compute 𝜖 and update 𝜏+ and 𝜏− in each iteration after the
probability update step as shown in Algorithm 2 in Appendix. This
allows us to iteratively approximate the optimal fair thresholds.
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3.3 Fair Collective Classification via Post
Processing

Another approach to reduce bias in CC is to directly reduce Δ𝐶 -
unfainess by modifying final predictions. To this end, we pair the
CC framework with two postprocessing techniques as follows.

Reject Option Classification (ROC) [11] is a classifier-agnostic
postprocessing method that exploits the low-confidence region of
a probabilistic classifier for discrimination reduction. We adopt the
same method and apply it over predictions from the last iteration of
collective inference. The ROC method first defines a critical region
composed of nodes for whichmax[𝑐𝑖,1, 1−𝑐𝑖,1] ≤ \ (assuming𝑦 = 1
to be the advantaged outcome). The nodes in the critical region
are labeled based on their sensitive attribute values: advantaged
outcome for the unprivileged group and disadvantaged outcome
for the privileged group. The nodes outside the critical region are
classified according to the standard decision rule. \ is a hyper-
parameter and is chosen according to label probabilities of nodes
inV𝐾 to maximize model performance and minimize bias.

Label Flipping (LF) [10] is another classifier-agnostic postprocess-
ing method which directly changes the labels based on estimates
from a probabilistic classifier. We first partition nodes from V𝑈
into two sets, one containing positively classified nodes from the
privileged group and the other containing negatively classified
nodes from the unprivileged group. We rank the nodes based on
their positive class probability in increasing order for the former
and decreasing order for the latter. We then flip the predicted labels
for an equal number of nodes in both sets to achieve fairness.

4 EXPERIMENTS
4.1 Compared Methods
We evaluate the fair collective classification formulations discussed
in Section 3 including FairCC-NR-W, FairCC-NR-N, FairCC-TA-
W, FairCC-TA-N, FairCC-ROC-W, FairCC-ROC-N, FairCC-LF-W,
and FairCC-LF-N. Note that the suffixes -W and -N denote WVRN
and NBR relational models, respectively. We compare them against
vanilla collective classification; CC-W and CC-N, and the naive
methodology that uses a fair 𝑓𝐿 ; FairNB+CC-W and FairNB+CC-N.
We also compare against non-collective classification methods, a
Naive Bayes classifier, NB, and its fair version, FairNB, that imple-
ments exponentiated gradient reduction[1]. All methods evaluated
in this section are implemented on the basis of AIF360 [2].

4.2 Results
Tables 1 summarizes our experiment results on the German dataset.
Due to space constraint, we include details regarding datasets, and
experimental setup as well as results for the Student dataset, and
impact ofV𝐾 size on algorithm performance in the Appendix. We
use accuracy and F1-score to evaluate performance and statistical
parity to evaluate fairness of the models. From the tables, we draw
the following conclusions.

4.2.1 Collective classification improves prediction performance for
networked data. In Tables 1 and 4, the classic collective classifica-
tion, eitherCC-W orCC-N, consistently achieves better prediction
accuracy as well as F1-score than the attribute-only NB classifier.

This demonstrates the ability of CCmodels to utilize graph structure
and properties to improve prediction performance.

4.2.2 Collective classification cannot guarantee fair prediction. The
unfairness measure Δ𝑆𝑃 is significant w.r.t. the widely-adopted
threshold 0.05 for both CC-W and CC-N with random as well as
degree-sorted sampling for both datasets. Additionally, Δ𝑆𝑃 values
for the two samplingmethods are fairly similar forCC-W compared
to CC-N. For CC-N, Δ𝑆𝑃 is larger for degree-sorted sampling in
the Student dataset and random sampling in the German dataset.
We also observed a higher amount of bias in degree sampledV𝐾

for Student dataset (0.089) than for the German dataset (0.011).
These observations suggest that CC-N is more sensitive to the
composition of nodes and bias inV𝐾 compared to CC-W. As the
CC-N computes class prior and neighborhood class probability
distribution using nodes in V𝐾 , it is largely influenced by the
neighborhood structure and bias present inV𝐾 .

4.2.3 The fair local classifier 𝑓𝐿 is insufficient for fair collective
classification. The method of incorporating a fair 𝑓𝐿 into the CC
framework, i.e., FairNB+CC-W or FairNB+CC-N, also has signif-
icant Δ𝑆𝑃 values, indicating that a fair 𝑓𝐿 fails to ensure fair final
predictions. ReplacingNBwith FairNB does not influence the final
predictions for CC-W and only slightly influences CC-N predic-
tions. For the random sampling case, FairNB+CC-N can reduce
Δ𝑆𝑃 , but this decrease is not significant compared to other methods.

4.2.4 The proposed NR and TA mechanisms significantly mitigate
bias in collective classification. The node reweighting (NR) method
achieves the desired 𝛿 = 0.05 for both WVRN and NBR classifiers
under all settings. As opposed to using fair 𝑓𝐿 in CC, FairCC-NR con-
siders historical bias inV𝐾 as well as propagated bias inV𝑈 and
mitigates it iteratively in subsequent iterations. This approach can
also significantly reduce unfairness for both sampling techniques
with a slight loss in accuracy. Despite this loss, FairCC-NR-W
and FairCC-NR-N still maintain accuracy gain over FairNB. This
demonstrates the effectiveness of FairCC-NR. The second proposed
mechanism, threshold adjustment (TA), significantly reduces un-
fairness, even though it fails to achieve the desired 𝛿 = 0.05 in some
cases where the degree of unfairness is high inV𝐾 . In addition,
this method outperforms in the trade-off between accuracy and
unfairness measure than the naive methods FairNB+CC-W and
FairNB+CC-N.

4.2.5 The postprocessingmechanism reduces bias. The simple ranking-
based label flipping approach i.e., FairCC-LF-W and FairCC-LF-
N, achieves statistical parity under all settings. As the method is
agnostic to the sampling technique and classification methodology,
it is effective for both datasets under random sampling as well as
degree-sorted sampling. The ROC method i.e., FairCC-ROC-W
and FairCC-ROC-N, reduces bias for both datasets with random
sampling setting but fails to reduce bias with degree-sorted sam-
pling. For degree-sorted sampling, nodes inV𝐾 have the highest
degrees resulting in more populated and diverse 1-hop neighbor-
hoods compared with the low-degree nodes in V𝑈 ; the region
threshold \ obtained fromV𝐾 may not be optimal forV𝑈 , leading
to a large bias for V𝑈 . We measure Δ𝑆𝑃 values for V𝐾 and V𝑈
which are observed to be 0.02, 0.08 for FairCC-ROC-W and 0.01,
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Table 1: Results for German dataset

Method Degree Random
ACC(%)↑ F1(%)↑ ∆SP ↓ ACC(%)↑ F1(%)↑ ∆SP ↓

NB 62.93 59.71 0.17 67.10±2.37 62.87±1.20 0.19±0.07
FairNB 62.18 57.21 0.07 67.37±2.74 62.86±1.25 0.03±0.01
CC-W 84.60 80.79 0.07 86.89±0.79 81.48±1.01 0.10±0.02
FairNB+CC-W 84.60 80.79 0.07 86.89±0.79 81.48±1.01 0.10±0.02
FairCC-ROC-W 84.45 80.70 0.09 89.55±1.05 85.78±1.32 0.06±0.06
FairCC-LF-W 84.60 80.79 0.05 87.19±0.65 81.91±0.81 0.05±0.00
FairCC-NR-W 81.76 76.57 0.03 87.57±1.28 82.56±2.16 0.02±0.01
FairCC-TA-W 84.45 80.57 0.04 87.84±1.16 83.03±1.51 0.06±0.02
CC-N 75.49 67.28 0.12 91.05±2.31 89.08±2.80 0.19±0.06
FairNB+CC-N 76.53 68.86 0.12 93.74±2.83 92.34±3.43 0.13±0.05
FairCC-ROC-N 76.08 68.33 0.12 92.19±2.30 90.64±2.74 0.10±0.03
FairCC-LF-N 77.88 70.47 0.04 91.29±1.54 89.38±1.78 0.05±0.00
FairCC-NR-N 80.57 74.06 0.01 93.95±2.81 92.57±3.37 0.04±0.02
FairCC-TA-N 80.87 74.57 0.01 63.89±5.16 55.90±6.15 0.08±0.04

0.23 for FairCC-ROC-N on the degree-sampled Student dataset.
We observed similar values for the German dataset. These results
verify that the ROC mechanism is able to remove bias inV𝐾 but
fails to mitigate unfairness inV𝑈 for degree-sorted sampling.

5 CONCLUSION
In this paper, we analyzed collective classification from a fairness
perspective and empirically verified that CC can result in unfair
predictions. We formulated and tested various approaches for fair
collective classification. We modified the CC framework to incor-
porate reweighting and threshold adjustment mechanisms for bias
mitigation. We empirically verified the shortcomings of certain
methods and the efficacy of the reweighting and label flipping
approaches.

GraphNeural Networks (GNNs) extend deep learning approaches
to graph data and are equipped to handle large graphs[16]. Some
studies have also extended their applications to heterogeneous
graphs[4] and non-homophilous graphs [20]. Researchers have also
proposed GNN frameworks that ensure fairness in graph mining
tasks [5]. However, GNNs are computationally expensive and re-
quire large volume of data for training & tuning [16]. Therefore,
for small graphs with favorable properties such as the ones dis-
cussed in this paper, fair collective classification methods still play
an important role in node classification tasks. For future work, we
will investigate bias in large-scale graphs with various structural
properties. We will compare fair GNNs and fair CC, and explore
their capabilities in various graph settings.
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A RELATEDWORK
A.1 Fairness in Machine Learning
Several fairness metrics have been proposed to quantify bias in ma-
chine learning. They can be broadly categorized into three groups:
group fairness which requires equal treatments for groups defined
by the protected attribute [6, 9], individual fairness which requires
similar treatment or prediction for similar individuals [6, 18], and
counterfactual fairness [12, 15] which requires similar prediction
for an individual and its counterfactual usually obtained by chang-
ing the value of its sensitive attribute. For this work, we focus on
the notion of group fairness.

The bias mitigation approaches proposed to achieve group fair-
ness can further be categorized into pre-processing, in-processing,
and post-processing techniques based on the stage that they are in-
corporated into the learning process. Pre-processing techniques are
applied directly to training data by modifying labels or attributes
or data representations so that the model is trained with unbiased
data [10, 18]. In-processing techniques involve a modified objective
function that allows algorithm optimization subject to fairness con-
straints [1, 6, 17]. Post-processing directly changes the predicted
labels to ensure fairness [9, 11]. However, most existing algorithms
are applied under the assumption that data is iid which may not be
directly applicable or effective for non-iid data and methodologies
used in collective classification.

A.2 Fairness in Relational Learning
Some recent researches have explored the role of relational struc-
tures on prediction bias [8]. Farnadi et al. [8] introduced a notion
of relational fairness that measures prediction bias generated from
discriminative patterns in relational data. The proposed fair-PSL al-
gorithm performs MAP inference subject to fairness constraints to
predict values of unknown variables. Another work by Espin-Noboa
et al. [7] studied the effects of network structure and sampling tech-
niques on collective classification performance and bias. They com-
pared the true positive rates for each label to assess the direction of
bias. Their study concluded that bias in collective classification can
be predicted based on class balance and level of homophily in the
network, and the empirical results showed that minorities may be
at a disadvantage when the classifier is trained on a small sample
from homophilous or neutral networks with class imbalance.

The relational database setting described in [8] is different from
our work where the dataset consists of a single table of attributed
data accompanied by a network structure that connects entities
described by those attributes. Our goal is to analyze and mitigate
bias caused by label propagation, similar to the exploration in [7],
rather than relational patterns among attributes. However, [7] per-
formed collective classification on data containing node labels as
the only attribute and defined minorities based on class member-
ship rather than membership to a demographic group. Generally
accepted notions of group fairness cannot be applied in such cases.
Moreover, [7] did not propose or test any fair mechanisms for collec-
tive classification. For our work, we analyze unfairness in collective
classification on attributed and homophilic networks where each
entity is described by a sensitive attribute and some non-sensitive
attributes in addition to the labels. We also empirically evaluate

various naive as well as heuristic approaches for fair collective
classification under two different sampling techniques.

B NOTATION

Table 2: Notation

Notation Definition

G the entire graph
𝑁 the number of nodes in G
V, E a set of nodes/edges
V𝐾 ,V𝑈 a set of nodes with known/unknown labels
X, x𝑖 features of all nodes/the 𝑖-th node
𝑆, 𝑠𝑖 the sensitive feature(s) of all nodes/the 𝑖-th node
𝑌,𝑦𝑖 the label(s) of all nodes/the 𝑖-th node
𝑌,𝑦𝑖 the predicted label(s) of all nodes/i-th node in

V𝑈
N𝑖 the 1-hop neighborhood of node the 𝑖-th node
𝑃 (𝑦𝑖 = 𝑐 |N𝑖 ) the cond. prob. of the 𝑖-th node belonging to

class 𝑐 given its neighborhood
Ĉ, ĉ𝑖 label probabilities of all nodes/𝑖-th node inV𝑈
𝑐𝑖, 𝑗 the probability of the 𝑖-th node belonging to

class 𝑗
Δ𝑆𝑃 statistical parity based unfairness measure
𝑓𝐿 (·) the local classifier
𝑓𝑅 (·) the relational classifier
𝑓𝑤𝑅 (·) the relational classifier that incorporates node

reweighting
𝛽 decay variable
𝑤𝑐,𝑎 the weight for a node with known/predicted

label value 𝑐 and sensitive attribute value 𝑎

C ALGORITHMS

Algorithm 1: Collective classification (CC)
Input :G = (V, E,X, 𝑌 ), 𝑓𝐿, 𝑓𝑅
Output : {𝑦𝑖 }

1 ĉ(0)
𝑖
← 𝑓𝐿 (x𝑖 ) ∀𝑣𝑖 ∈ V𝑈

2 for 𝑡 = 0 . . .𝑇 do
3 ĉ(𝑡+1)

𝑖
← 𝛽 (𝑡+1) · 𝑓𝑅 (𝑣𝑖 ) (𝑡 ) + (1−𝛽 (𝑡+1) ) · ĉ(𝑡 )𝑖 ∀𝑣𝑖 ∈ V𝑈

4 use ĉ(𝑡+1)
𝑖

to obtain 𝑦 (𝑡+1)
𝑖

5 if 𝑦 (𝑡+1)
𝑖

= 𝑦
(𝑡 )
𝑖
∀𝑖 ∈ V𝑈 then

6 break
7 end if
8 end for
9 return {𝑦 (𝑡+1)

𝑖
}

D DATASETS
For the purpose of this study, we derive semi-synthetic datasets
from two benchmarks for fair machine learning. 1) The German
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Algorithm 2: Fair Collective Classification via Node
Reweighting (FairCC-NR)
Input :G = (V, E,X, 𝑌 ), 𝑓𝐿, 𝑓𝑤𝑅
Output : fair {𝑦𝑖 }

1 ĉ(0)
𝑖
← 𝑓𝐿 (x𝑖 ) ∀𝑣𝑖 ∈ V𝑈

2 𝑤
(0)
𝑐,𝑎 ← 1 ∀𝑐,∀𝑎

3 for 𝑡 = 0 . . .𝑇 do
4 𝑤

(𝑡+1)
𝑐,𝑎 ← 𝛽 (𝑡+1) · 𝑃 (𝑦 = 𝑐) (𝑡 )/𝑃 (𝑦 = 𝑐 |𝑠 = 𝑎) (𝑡 )

5 +(1 − 𝛽 (𝑡+1) ) ·𝑤 (𝑡 )𝑐,𝑎 ∀𝑐,∀𝑎
6 ĉ(𝑡+1)

𝑖
← 𝛽 (𝑡+1) ·𝑓𝑤𝑅 (𝑣𝑖 ) (𝑡 )+(1−𝛽 (𝑡+1) )·ĉ(𝑡 )𝑖 ∀𝑣𝑖 ∈ V𝑈

7 // 𝑓𝑤𝑅 refers to Eq. 9 or 10

8 use ĉ(𝑡+1)
𝑖

to obtain 𝑦 (𝑡+1)
𝑖

9 compute Δ(𝑡+1)
𝑆𝑃

10 if 𝑦 (𝑡+1)
𝑖

= 𝑦
(𝑡 )
𝑖
∀𝑖 ∈ V𝑈 and Δ

(𝑡+1)
𝑆𝑃

≤ 𝛿 then
11 break
12 end if
13 end for
14 return {𝑦 (𝑡+1)

𝑖
}

Algorithm 3: Fair Collective Classification via Threshold
Adaptation (FairCC-TA)
Input :G = (V, E,X, 𝑌 ), 𝑓𝐿, 𝑓𝑅
Output : fair {𝑦𝑖 }

1 ĉ(0)
𝑖
← 𝑓𝐿 (x𝑖 ) ∀𝑣𝑖 ∈ V𝑈

2 Initialize 𝜏+ = 𝜏− = 0.5
3 for 𝑡 = 0 . . .𝑇 do
4 ĉ(𝑡+1)

𝑖
← 𝛽 (𝑡+1) · 𝑓𝑅 (𝑣𝑖 ) (𝑡 ) + (1−𝛽 (𝑡+1) ) · ĉ(𝑡 )𝑖 ∀𝑣𝑖 ∈ V𝑈

5 compute 𝜖 (𝑡+1)

6 // Refer to Section 3.2

7 𝜏+ ← 𝜏+ + 𝛽 (𝑡+1) · 𝜖 (𝑡+1) + (1 − 𝛽 (𝑡+1) ) · 𝜖 (𝑡 )

8 𝜏− ← 𝜏− − 𝛽 (𝑡+1) · 𝜖 (𝑡+1) − (1 − 𝛽 (𝑡+1) ) · 𝜖 (𝑡 )

9 use ĉ(𝑡+1)
𝑖

and 𝜏+ to obtain 𝑦 (𝑡+1)
𝑖

∀𝑖 ∈ V𝑈 : 𝑠𝑖 = +
10 use ĉ(𝑡+1)

𝑖
and 𝜏− to obtain 𝑦 (𝑡+1)

𝑖
∀𝑖 ∈ V𝑈 : 𝑠𝑖 = −

11 compute Δ(𝑡+1)
𝑆𝑃

12 if 𝑦 (𝑡+1)
𝑖

= 𝑦
(𝑡 )
𝑖
∀𝑖 ∈ V𝑈 and Δ

(𝑡+1)
𝑆𝑃

≤ 𝛿 then
13 break
14 end if
15 end for
16 return {𝑦 (𝑡+1)

𝑖
}

credit dataset [14] contains information about clients at a German
bank and the prediction task is to classify clients as good or bad
customer. We use gender as the sensitive attribute. 2) The Student
dataset [14] describes student achievements in Portuguese subject
at two Portugese schools. We use the attribute G3 as the label by
categorizing it into < 10 and ≥ 10 groups and treat sex as the
sensitive attribute.

For both datasets, we manually generate edges based on instance
similarity by calculating the weighted Euclidean distance between

any arbitrary pair of nodes (𝑣𝑖 , 𝑣 𝑗 ) as
(
1 +

√∑
𝑘

𝑤𝑘 (𝑥𝑖,𝑘 − 𝑥 𝑗,𝑘 )2
)−1

.

We include class in the Euclidean distance and assign a higher
weight to it in order to maintain a homophilous network which is
the focus of this paper. We then select the top 𝑛 node pairs to form
undirected and unweighted edges for the graph and also remove
any isolated nodes. The value of 𝑛 depends on the desired value of
network density and network homophily.

Table 3: Dataset Statistics

Dataset German Student

# of nodes 955 577
# of edges 19980 8411
# of node attributes 32 38
density 0.04 0.05
assortativity in 𝑦 0.667 0.649
assortativity in 𝑠 0.595 0.573

Table 3 shows the statistics for both datasets where assortativity
in𝑦 indicates the degree of label-based homophily, and assortativity
in 𝑠 indicates the degree of sensitive attribute-based homophily in
the network.

E EXPERIMENTAL SETUP
For each dataset, we choose nodes in V𝐾 using two sampling
techniques: random sampling and degree-sorted sampling. For ran-
dom sampling, we randomly choose 30% of nodes to form V𝐾 .
For degree-sorted sampling, we choose the top 30% of nodes as
V𝐾 from a list of all nodes sorted in the descending order of their
degrees. The degree sampling technique samplesV𝐾 such that it
contains the central nodes from most clusters in cases where the
dataset is comprised of clusters instead of a single connected graph.
The two sampling techniques allow us to compare model perfor-
mance and fairness under different local neighborhood structures
for nodes inV𝐾 .

We use 𝛿 = 0.05 as the fairness threshold in the experiments.
Following the experimental setup in [13], we set 𝑘 = 1, 𝛼 = 0.99
and run the inference procedure for a maximum of 100 iterations
for both CC and FairCC. For random node sampling, we run the
experiments 5 times with different random seeds and report their
average and standard deviation. For degree-sorted sampling, we
run the experiments once and report the evaluation values.

F MORE EXPERIMENTAL RESULTS
F.1 Results for Student dataset
F.2 Impact ofV𝐾 size
We further study the impacts of the size ofV𝐾 on NR and LF. Note
that we skip the study of TA as it already fails to achieve fairness
in some cases as shown in Section 4.2.4 We conduct experiments
on the Student dataset for both degree and random sampling as
this dataset has more bias inV𝐾 . We varyV𝐾 as {10%, 15%, 20%,
25%, 30%, 35%, 40%} of all nodes in the graph. The results for single
runs of degree sampling are shown in Figures 1a, 1b for CC and
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Table 4: Results for Student dataset

Method Degree Random
ACC(%)↑ F1(%)↑ ∆SP ↓ ACC(%)↑ F1(%)↑ ∆SP ↓

NB 73.51 73.47 0.12 71.71±6.60 70.85±7.03 0.14±0.01
FairNB 73.02 72.95 0.10 71.27±5.22 70.50±5.65 0.05±0.05
CC-W 90.59 90.08 0.11 91.66±1.32 91.59±1.33 0.14±0.02
FairNB+CC-W 90.59 90.08 0.11 91.66±1.32 91.59±1.33 0.14±0.02
FairCC-ROC-W 90.59 90.06 0.08 89.08±1.87 88.95±1.85 0.05±0.04
FairCC-LF-W 89.60 89.04 0.05 89.78±1.07 89.69±1.11 0.04±0.00
FairCC-NR-W 87.13 86.68 0.01 88.59±0.96 88.47±0.98 0.02±0.01
FairCC-TA-W 92.33 92.02 0.09 90.37±0.92 90.27±0.91 0.07±0.03
CC-N 84.65 84.62 0.23 85.66±3.95 85.61±3.94 0.14±0.03
FairNB+CC-N 84.41 84.37 0.23 87.20±3.95 87.12±3.95 0.13±0.02
FairCC-ROC-N 86.14 86.08 0.23 85.61±4.07 85.55±4.06 0.06±0.01
FairCC-LF-N 81.68 81.64 0.05 85.26±3.23 85.21±3.22 0.04±0.00
FairCC-NR-N 78.96 78.92 0.00 84.37±3.93 84.34±3.95 0.03±0.02
FairCC-TA-N 82.43 82.39 0.06 78.01±9.54 77.81±9.67 0.07±0.04

(a) ACC for 𝑓𝑅 = WVRN (b) Δ𝑆𝑃 for 𝑓𝑅 = WVRN (c) ACC for 𝑓𝑅 = NBR (d) Δ𝑆𝑃 for 𝑓𝑅 = NBR

Figure 1: (a): The accuracymeasures (b): and statistical parity measures of CC-W, FairCC-LF-W, FairCC-NR-W under different
degree-sorted StudentV𝐾 size. (c): The accuracymeasures (d): and statistical paritymeasures of of CC-N, FairCC-LF-N, FairCC-
NR-N under different degree-sorted StudentV𝐾 size.

(a) ACC for 𝑓𝑅 = WVRN (b) Δ𝑆𝑃 for 𝑓𝑅 = WVRN (c) ACC for 𝑓𝑅 = NBR (d) Δ𝑆𝑃 for 𝑓𝑅 = NBR

Figure 2: (a): The accuracymeasures (b): and statistical parity measures of CC-W, FairCC-LF-W, FairCC-NR-W under different
randomly Student V𝐾 size. (c): The accuracy measures (d): and statistical parity measures of of CC-N, FairCC-LF-N, FairCC-
NR-N under different randomly StudentV𝐾 size.

FairCC models with WVRN relational classifier and Figures 1c, 1d
for models with NBR relational classifier. Generally, Δ𝑆𝑃 is small
when V𝐾 is 10% but increases rapidly thereafter for vanilla CC.
The proposed NR and LF can reduce unfairness significantly to
achieve the specified fairness threshold with some drop in pre-
diction performance for all tested V𝐾 sizes. Figure 2 shows the
average results with standard deviation over 5 runs on randomly

sampled Student dataset. The unfairness measure for vanilla CC is
fairly similar despite differences in size ofV𝐾 . Both NR and LF can
consistently reduce unfairness in this setting as well. These results
demonstrate that both NR and LF can effectively achieve fairness
for various sizes ofV𝐾 with a slight loss in accuracy.
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